Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 4(2): e4518, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19229340

RESUMO

Targeted disruption of murine Cdk2ap1, an inhibitor of CDK2 function and hence G1/S transition, results in the embryonic lethality with a high penetration rate. Detailed timed pregnancy analysis of embryos showed that the lethality occurred between embryonic day 3.5 pc and 5.5 pc, a period of implantation and early development of implanted embryos. Two homozygous knockout mice that survived to term showed identical craniofacial defect, including a short snout and a round forehead. Examination of craniofacial morphology by measuring Snout Length (SL) vs. Face Width (FW) showed that the Cdk2ap1(+/-) mice were born with a reduced SL/FW ratio compared to the Cdk2ap1(+/+) and the reduction was more pronounced in Cdk2ap1(-/-) mice. A transgenic rescue of the lethality was attempted by crossing Cdk2ap1(+/-) animals with K14-Cdk2ap1 transgenic mice. Resulting Cdk2ap1(+/-:K14-Cdk2ap1) transgenic mice showed an improved incidence of full term animals (16.7% from 0.5%) on a Cdk2ap1(-/-) background. Transgenic expression of Cdk2ap1 in Cdk2ap1(-/-:K14-Cdk2ap1) animals restored SL/FW ratio to the level of Cdk2ap1(+/-:K14-Cdk2ap1) mice, but not to that of the Cdk2ap1(+/+:K14-Cdk2ap1) mice. Teratoma formation analysis using mESCs showed an abrogated in vivo pluripotency of Cdk2ap1(-/-) mESCs towards a restricted mesoderm lineage specification. This study demonstrates that Cdk2ap1 plays an essential role in the early stage of embryogenesis and has a potential role during craniofacial morphogenesis.


Assuntos
Face/anormalidades , Genes Letais , Morfogênese/genética , Proteínas Quinases/genética , Proteínas Quinases/fisiologia , Crânio/anormalidades , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/fisiologia , Animais , Linhagem da Célula , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Embrião de Mamíferos , Desenvolvimento Embrionário/genética , Face/embriologia , Genótipo , Mesoderma , Camundongos , Camundongos Mutantes , Células-Tronco Pluripotentes/citologia , Crânio/embriologia , Teratoma/genética
2.
Cell ; 128(5): 947-59, 2007 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-17350578

RESUMO

During heart development the second heart field (SHF) provides progenitor cells for most cardiomyocytes and expresses the homeodomain factor Nkx2-5. We now show that feedback repression of Bmp2/Smad1 signaling by Nkx2-5 critically regulates SHF proliferation and outflow tract (OFT) morphology. In the cardiac fields of Nkx2-5 mutants, genes controlling cardiac specification (including Bmp2) and maintenance of the progenitor state were upregulated, leading initially to progenitor overspecification, but subsequently to failed SHF proliferation and OFT truncation. In Smad1 mutants, SHF proliferation and deployment to the OFT were increased, while Smad1 deletion in Nkx2-5 mutants rescued SHF proliferation and OFT development. In Nkx2-5 hypomorphic mice, which recapitulate human congenital heart disease (CHD), OFT anomalies were also rescued by Smad1 deletion. Our findings demonstrate that Nkx2-5 orchestrates the transition between periods of cardiac induction, progenitor proliferation, and OFT morphogenesis via a Smad1-dependent negative feedback loop, which may be a frequent molecular target in CHD.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Retroalimentação Fisiológica , Proteínas de Homeodomínio/metabolismo , Células-Tronco Multipotentes/citologia , Miocárdio/citologia , Miócitos Cardíacos/citologia , Proteína Smad1/metabolismo , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Proteína Morfogenética Óssea 2 , Proliferação de Células , DNA Complementar , Embrião de Mamíferos , Coração/embriologia , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/metabolismo , Proteína Homeobox Nkx-2.5 , Proteínas de Homeodomínio/genética , Humanos , Proteínas com Homeodomínio LIM , Camundongos , Células-Tronco Multipotentes/metabolismo , Miócitos Cardíacos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Fatores de Transcrição/genética
3.
Oncogene ; 24(3): 407-18, 2005 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-15543230

RESUMO

We examined the biological role of p12(CDK2-AP1) in cisplatin-mediated responses by using murine ES p12(CDK2-AP1) knockout clones generated by a targeted disruption of murine p12(CDK2-AP1). Homozygous knockout clones showed an increased cellular proliferation along with an increase in S and a decrease in G2/M phase populations. Interestingly, ES p12(CDK2-AP1) knockout clones showed a resistance to cisplatin treatment along with an increased DNA repair activity assessed by host cell reactivation assay using a cisplatin-damaged reporter DNA and a significant reduction of apoptosis upon cisplatin treatment. By using stable p12(CDK2-AP1) short interfering RNA (siRNA) clones from human normal oral keratinocytes, we confirmed that downregulation of p12(CDK2-AP1) resulted in a resistance to cisplatin. More interestingly, cisplatin treatment resulted in a reduction of CDK2 kinase activity in control clones, but p12(CDK2-AP1) knockout clones showed a sustained CDK2 kinase activity. These data suggest that p12(CDK2-AP1) plays a role in cisplatin-mediated cellular responses by modulating CDK2 activity. These data further suggest p12(CDK2-AP1) is a potential gene therapeutic agent for oral/head and neck cancer in conjunction with DNA-damaging agents such as cisplatin.


Assuntos
Cisplatino/toxicidade , Dano ao DNA/genética , Proteínas Quinases/genética , Proteínas Supressoras de Tumor/genética , Animais , Antineoplásicos/toxicidade , Linhagem Celular , Primers do DNA , Genes Supressores de Tumor , Neoplasias de Cabeça e Pescoço , Camundongos , Neoplasias Bucais , Reação em Cadeia da Polimerase , RNA Mensageiro/genética , Células-Tronco , Proteínas Supressoras de Tumor/deficiência
4.
Int J Oncol ; 25(5): 1423-30, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15492834

RESUMO

Proteome analysis of secretions from individual salivary glands is important for understanding the health of the oral cavity and pathogenesis of certain diseases. However, cross-contamination of submandibular (SM) and sublingual (SL) glandular secretions can occur. The close anatomic relationship of the SM and SL ductal orifices can lead to such contamination. Additionally, these glands may share common ducts. To insure the purity of SM/SL secretions for proteomic analysis, it is important to develop unique biomarkers which could be used to verify the integrity of the individual glandular saliva. In this study, a proteomics approach based on mass spectrometry and gel electrophoresis techniques was utilized to identify and verify a set of proteins (cystatin C, calgranulin B and MUC5B mucin), which are differentially expressed in SM/SL secretions. SM/SL fluids were obtained from nine healthy subjects. Cystatin C was found to be an SM-selective protein as it was found in all SM fluids but not detected in two SL fluids. MUC5B mucin and calgranulin B, on the other hand, were found to be SL-selective proteins. All SL samples contained MUC5B mucin, whereas MUC5B mucin was not detected in four SM samples. Eight of the SL samples contained calgranulin B; however, calgranulin B was absent in eight SM samples. This set of protein markers, especially calgranulin B, can be used to determine the purity of SM/SL samples, and therefore identify potential individuals who do not exhibit cross-contaminated SM/SL secretions, an important requirement for subsequent proteome analysis of pure SM and SL secretions.


Assuntos
Biomarcadores/análise , Calgranulina B/análise , Cistatinas/análise , Mucinas/análise , Proteômica/métodos , Glândula Sublingual/metabolismo , Glândula Submandibular/metabolismo , Adulto , Cistatina C , Eletroforese em Gel Bidimensional , Feminino , Humanos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Mucina-5B , Proteômica/normas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
5.
Cancer Res ; 64(2): 490-9, 2004 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-14744761

RESUMO

p12(CDK2-AP1) (p12) is a growth suppressor isolated from normal keratinocytes. Ectopic expression of p12 in squamous carcinoma cells reversed the malignant phenotype of these cells, in part due an ability of p12 to bind to both DNA polymerase alpha/primase and to cyclin-dependent kinase 2 (CDK2), thereby inhibiting their activities. We report in this article that in normal epithelial cells, transforming growth factor beta1 (TGF-beta1) induces p12 expression transcriptionally, which, in turn, mediates the growth inhibitory activity of TGF-beta1. We created inducible p12 antisense HaCaT cell lines [ip12 (-) HaCaT] and showed that selective reduction of cellular p12 resulted in an increase in: (a) CDK2-associated kinase activity; (b) protein retinoblastoma (pRB) phosphorylation; and (c) [(3)H]thymidine incorporation, and partially reversed TGF-beta1-mediated inhibition of CDK2 kinase activity, pRB phosphorylation, and cell proliferation. Furthermore, we generated p12-deficient mouse oral keratinocytes (MOK(p12-/-)) and compared their growth characteristics and response to TGF-beta1 with that of wild-type mouse oral keratinocytes (MOK(WT)). Under normal culture conditions, the number of MOK(p12-/-) in S phase is 2-fold greater than that of MOK(WT). Concomitantly, fewer cells are in G(2) phase in MOK(p12-/-) than that in MOK(WT). Moreover, response to TGF-beta1-mediated growth suppression is compromised in MOK(p12-/-) cells. Mechanistic studies showed that MOK(p12-/-) have increased CDK2 activity and reduced sensitivity to inhibition by TGF-beta1. Collectively our data suggest that p12 plays a role in TGF-beta1-mediated growth suppression by modulating CDK2 activities and pRB phosphorylation.


Assuntos
Queratinócitos/fisiologia , Fator de Crescimento Transformador beta/farmacologia , Proteínas Supressoras de Tumor/fisiologia , Northern Blotting , Ciclo Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Células Cultivadas , DNA/biossíntese , Primers do DNA , DNA Complementar , Humanos , Recém-Nascido , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Regiões Promotoras Genéticas , RNA/genética , RNA/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Pele/citologia , Timidina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...