Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 297(1): C94-101, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19419994

RESUMO

The metabolic sensor AMP-activated protein kinase (AMPK) has emerged as an important link between cellular metabolic status and ion transport activity. We previously found that AMPK binds to and phosphorylates CFTR in vitro and inhibits PKA-dependent stimulation of CFTR channel gating in Calu-3 bronchial serous gland epithelial cells. To further characterize the mechanism of AMPK-dependent regulation of CFTR, whole cell patch-clamp measurements were performed with PKA activation in Calu-3 cells expressing either constitutively active or dominant-negative AMPK mutants (AMPK-CA or AMPK-DN). Baseline CFTR conductance in cells expressing AMPK-DN was substantially greater than controls, suggesting that tonic AMPK activity in these cells inhibits CFTR under basal conditions. Although baseline CFTR conductance in cells expressing AMPK-CA was comparable to that of controls, PKA stimulation of CFTR was completely blocked in AMPK-CA-expressing cells, suggesting that AMPK activation renders CFTR resistant to PKA activation in vivo. Phosphorylation studies of CFTR in human embryonic kidney-293 cells using tetracycline-inducible expression of AMPK-DN demonstrated AMPK-dependent phosphorylation of CFTR in vivo. However, AMPK activity modulation had no effect on CFTR in vivo phosphorylation in response to graded doses of PKA or PKC agonists. Thus, AMPK-dependent CFTR phosphorylation renders the channel resistant to activation by PKA and PKC without preventing phosphorylation by these kinases. We found that Ser768, a CFTR R domain residue considered to be an inhibitory PKA site, is the dominant site of AMPK phosphorylation in vitro. Ser-to-Ala mutation at this site enhanced baseline CFTR activity and rendered CFTR resistant to inhibition by AMPK, suggesting that AMPK phosphorylation at Ser768 is required for its inhibition of CFTR. In summary, our findings indicate that AMPK-dependent phosphorylation of CFTR inhibits CFTR activation by PKA, thereby tuning the PKA-responsiveness of CFTR to metabolic and other stresses in the cell.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Transdução de Sinais , Proteínas Quinases Ativadas por AMP/química , Proteínas Quinases Ativadas por AMP/genética , Animais , Domínio Catalítico , Linhagem Celular , Proteínas Quinases Dependentes de AMP Cíclico/química , Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Ativação Enzimática , Ativadores de Enzimas/farmacologia , Humanos , Potenciais da Membrana , Mutação , Técnicas de Patch-Clamp , Fosforilação , Proteína Quinase C/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes/metabolismo , Serina , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transfecção , Xenopus laevis
2.
Development ; 131(9): 2049-59, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15073154

RESUMO

The succession of developmental events in the C. elegans larva is governed by the heterochronic genes. When mutated, these genes cause either precocious or retarded developmental phenotypes, in which stage-specific patterns of cell division and differentiation are either skipped or reiterated, respectively. We identified a new heterochronic gene, lin-46, from mutations that suppress the precocious phenotypes caused by mutations in the heterochronic genes lin-14 and lin-28. lin-46 mutants on their own display retarded phenotypes in which cell division patterns are reiterated and differentiation is prevented in certain cell lineages. Our analysis indicates that lin-46 acts at a step immediately downstream of lin-28, affecting both the regulation of the heterochronic gene pathway and execution of stage-specific developmental events at two stages: the third larval stage and adult. We also show that lin-46 is required prior to the third stage for normal adult cell fates, suggesting that it acts once to control fates at both stages, and that it affects adult fates through the let-7 branch of the heterochronic pathway. Interestingly, lin-46 encodes a protein homologous to MoeA of bacteria and the C-terminal domain of mammalian gephyrin, a multifunctional scaffolding protein. Our findings suggest that the LIN-46 protein acts as a scaffold for a multiprotein assembly that controls developmental timing, and expand the known roles of gephyrin-related proteins to development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Morfogênese/fisiologia , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/anatomia & histologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte/genética , Divisão Celular/fisiologia , Linhagem da Célula , Temperatura Baixa , Proteínas de Membrana/genética , Dados de Sequência Molecular , Mutação , Fenótipo , Fatores de Tempo
3.
J Biol Chem ; 278(2): 998-1004, 2003 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-12427743

RESUMO

Cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel activity is important for fluid and electrolyte transport in many epithelia including the lung, the site of most cystic fibrosis-associated morbidity. CFTR is unique among ion channels in requiring ATP hydrolysis for its gating, suggesting that its activity is coupled to cellular metabolic status. The metabolic sensor AMP-activated kinase (AMPK) binds to and phosphorylates CFTR, co-localizes with it in various tissues, and inhibits CFTR currents in Xenopus oocytes (Hallows, K. R., Raghuram, V., Kemp, B. E., Witters, L. A. & Foskett, J. K. (2000) J. Clin. Invest. 105, 1711-1721). Here we demonstrate that this AMPK-CFTR interaction has functional implications in human lung epithelial cells. Pharmacologic activation of AMPK inhibited forskolin-stimulated CFTR short circuit currents in polarized Calu-3 cell monolayers. In whole-cell patch clamp experiments, the activation of endogenous AMPK either pharmacologically or by the overexpression of an AMPK-activating non-catalytic subunit mutant (AMPK-gamma1-R70Q) dramatically inhibited forskolin-stimulated CFTR conductance in Calu-3 and CFTR-expressing Chinese hamster ovary cells. Plasma membrane expression of CFTR, assessed by surface biotinylation, was not affected by AMPK activation. In contrast, the single channel open probability of CFTR was strongly reduced in cell-attached patch clamp measurements of Calu-3 cells transfected with the AMPK-activating mutant, an effect due primarily to a substantial prolongation of the mean closed time of the channel. As a metabolic sensor in cells, AMPK may be important in tuning CFTR activity to cellular energy charge, thereby linking transepithelial transport and the maintenance of cellular ion gradients to cellular metabolism.


Assuntos
Aminoimidazol Carboxamida/análogos & derivados , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Ativação do Canal Iônico/fisiologia , Complexos Multienzimáticos/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Quinases Ativadas por AMP , Aminoimidazol Carboxamida/farmacologia , Animais , Células CHO , Polaridade Celular , Cricetinae , Humanos , Pulmão/metabolismo , Ribonucleotídeos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...