Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 33(12): e17383, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38747342

RESUMO

Despite a long presence in the contiguous United States (US), the distribution of invasive wild pigs (Sus scrofa × domesticus) has expanded rapidly since the 1980s, suggesting a more recent evolutionary shift towards greater invasiveness. Contemporary populations of wild pigs represent exoferal hybrid descendants of domestic pigs and European wild boar, with such hybridization expected to enrich genetic diversity and increase the adaptive potential of populations. Our objective was to characterize how genetic enrichment through hybridization increases the invasiveness of populations by identifying signals of selection and the ancestral origins of selected loci. Our study focused on invasive wild pigs within Great Smoky Mountains National Park, which represents a hybrid population descendent from the admixture of established populations of feral pigs and an introduction of European wild boar to North America. Accordingly, we genotyped 881 wild pigs with multiple high-density single-nucleotide polymorphism (SNP) arrays. We found 233 markers under putative selection spread over 79 regions across 16 out of 18 autosomes, which contained genes involved in traits affecting feralization. Among these, genes were found to be related to skull formation and neurogenesis, with two genes, TYRP1 and TYR, also encoding for crucial melanogenesis enzymes. The most common haplotypes associated with regions under selection for the Great Smoky Mountains population were also common among other populations throughout the region, indicating a key role of putatively selective variants in the fitness of invasive populations. Interestingly, many of these haplotypes were absent among European wild boar reference genotypes, indicating feralization through genetic adaptation.


Assuntos
Genética Populacional , Espécies Introduzidas , Polimorfismo de Nucleotídeo Único , Seleção Genética , Sus scrofa , Animais , Estados Unidos , Polimorfismo de Nucleotídeo Único/genética , Sus scrofa/genética , Genótipo , Hibridização Genética , Suínos/genética , Animais Selvagens/genética , Variação Genética
2.
Ecol Evol ; 14(4): e11197, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38571790

RESUMO

Theodore Roosevelt National Park (TRNP) manages a herd of feral horses (Equus caballus) which was present on the landscape prior to the establishment of the park. The population presents a unique scenario in that it has experienced fairly intensive and well-documented management since the park's establishment, including herd size reductions, intentional introduction of diversity, and subsequent attempts to remove introduced lineages. This provides an interesting case study on the genetic effects of diverse evolutionary forces on an isolated feral population. To explore the effects of these forces and clarify the relationship of this feral herd with other horses, we used genome-wide markers to examine the population structure of a combined dataset containing common established breeds. Using the Illumina Equine 70k BeadChip, we sampled SNPs across the genome for 118 TRNP horses and evaluated the inbreeding coefficient f and runs of homozygosity (RoH). To identify breed relationships, we compared 23 representative TRNP samples with 792 horses from 35 different breeds using genomic population structure analyses. Mean f of TRNP horses was 0.180, while the mean f for all other breeds in the dataset was 0.116 (SD 0.079). RoH analysis indicates that the TRNP population has experienced recent inbreeding in a timeframe consistent with their management. With Bayesian clustering, PCA, and maximum likelihood phylogeny, TRNP horses show genetic differentiation from other breeds, likely due to isolation, historical population bottlenecks, and genetic drift. However, maximum likelihood phylogeny places them with moderate confidence (76.8%) among draft breeds, which is consistent with the known history of breeds used on early North Dakota ranches and stallions subsequently introduced to the park herd. These findings will help resolve speculation about the origins of the herd and inform management decisions for the TRNP herd.

3.
J Reprod Immunol ; 155: 103779, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36462462

RESUMO

Contraceptive vaccines are used to reduce birth rates in wild and feral animal populations. While the immunocontraceptive GonaCon-Equine has proven effective in reducing fertility among female feral horses, there is individual variation in the duration of infertility following treatment. To identify genetic factors influencing the effectiveness of GonaCon-Equine, we conducted a genome-wide association study of 88 mares from a feral population genotyped using the Illumina GGP Equine 70k SNP array. Contraceptive treatment schedules and long-term foaling rates have been recorded for each individual. We used mixed linear models to control for relatedness among mares. We found a significant association (p < 5 ×10-8) with a locus on equine chromosome 18. The most likely candidate genes in this region are STAT1 and STAT4, which are both involved in immune system function. Variation in STAT function could affect the immune response to the vaccine, leading to variation in contraceptive efficacy. Additional SNPs reaching a less stringent threshold of significance (p < 5 ×10-6) were located on other chromosomes near known immune system genes, supporting the hypothesis that variation in immunocontraceptive efficacy can be attributed to genetic variation in immune response rather than fertility genes.


Assuntos
Vacinas Anticoncepcionais , Vacinas , Animais , Cavalos , Feminino , Estudo de Associação Genômica Ampla , Fertilidade , Anticoncepcionais
4.
PLoS One ; 13(7): e0201570, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30063758

RESUMO

Wildlife and humans are increasingly competing for resources worldwide, and a diverse, innovative, and effective set of management tools is needed. Controlling abundance of wildlife species that are simultaneously protected, abundant, competitive for resources, and in conflict with some stakeholders but beloved by others, is a daunting challenge. Free-ranging horses (Equus caballus) present such a conundrum and managers struggle for effective tools for regulating their abundance. Controlling reproduction of female horses presents a potential alternative. During 2009-2017, we determined the long-term effectiveness of GnRH vaccine (GonaCon-Equine) both as a single immunization and subsequent reimmunization on reproduction and side effects in free-ranging horses. At a scheduled management roundup in 2009, we randomly assigned 57 adult mares to either a GonaCon-Equine treatment group (n = 29) or a saline control group (n = 28). In a second roundup in 2013, we administered a booster vaccination to these same mares. We used annual ground observations to estimate foaling proportions, social behaviors, body condition, and injection site reactions. We found this vaccine to be safe for pregnant females and neonates, with no overt deleterious behavioral side effects during the breeding season. The proportion of treated mares that foaled following a single vaccination was lower than that for control mares for the second (P = 0.03) and third (P = 0.08) post-treatment foaling seasons but was similar (P = 0.67) to untreated mares for the fourth season, demonstrating reversibility of the primary vaccine treatment. After two vaccinations, however, the proportion of females giving birth was lower (P <0.001) than that for control mares for three consecutive years and ranged from 0.0-0.16. The only detectable adverse side effect of vaccination was intramuscular swelling at the vaccination site. Regardless of vaccine treatment (primary/secondary), approximately 62% (34/55) of immunized mares revealed a visible reaction at the vaccine injection site. However, none of these mares displayed any evidence of lameness, altered gait or abnormal range of movement throughout the 8 years they were observed in this study. Our research suggests that practical application of this vaccine in feral horses will require an initial inoculation that may provide only modest suppression of fertility followed by reimmunization that together could result in greater reduction in population growth rates over time.


Assuntos
Anticoncepção Imunológica , Eficácia de Contraceptivos , Hormônio Liberador de Gonadotropina/imunologia , Cavalos , Imunização Secundária , Vacinas Anticoncepcionais/uso terapêutico , Animais , Animais Selvagens , Anticoncepção Imunológica/efeitos adversos , Anticoncepção Imunológica/métodos , Anticoncepção Imunológica/veterinária , Feminino , Cavalos/imunologia , Imunização Secundária/efeitos adversos , Imunização Secundária/métodos , Imunização Secundária/veterinária , Gravidez , Distribuição Aleatória , Vacinação/efeitos adversos , Vacinação/métodos , Vacinação/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...