Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Behav Ecol ; 30(2): 528-540, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30971861

RESUMO

Patterns of dispersal behavior are often driven by the composition and configuration of suitable habitat in a matrix of unsuitable habitat. Interactions between animal behavior and landscapes can therefore influence population dynamics, population and species distributions, population genetic structure, and the evolution of behavior. Spatially explicit individual-based models (IBMs) are ideal tools for exploring the effects of landscape structure on dispersal. We developed an empirically parameterized IBM in the modeling framework SEARCH to simulate dispersal of translocated American martens in Wisconsin. We tested the hypothesis that a time-limited disperser should be willing to settle in lower quality habitat over time. To evaluate model performance, we used a pattern-oriented modeling approach. Our best model matched all empirical dispersal patterns (e.g., dispersal distance) except time to settlement. This model incorporated a required search phase as well as the mechanism for declining habitat selectivity over time, which represents the first demonstration of this hypothesis for a vertebrate species. We suggest that temporal plasticity in habitat selectivity allows individuals to maximize fitness by making a tradeoff between habitat quality and risk of mortality. Our IBM is pragmatic in that it addresses a management need for a species of conservation concern. However, our model is also paradigmatic in that we explicitly tested a theory of dispersal behavior. Linking these 2 approaches to ecological modeling can further the utility of individual-based modeling and provide direction for future theoretical and empirical work on animal behavior.

2.
PLoS One ; 8(5): e64656, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23717647

RESUMO

Complex decisions dramatically affect animal dispersal and space use. Dispersing individuals respond to a combination of fine-scale environmental stimuli and internal attributes. Individual-based modeling offers a valuable approach for the investigation of such interactions because it combines the heterogeneity of animal behaviors with spatial detail. Most individual-based models (IBMs), however, vastly oversimplify animal behavior and such behavioral minimalism diminishes the value of these models. We present program SEARCH (Spatially Explicit Animal Response to Composition of Habitat), a spatially explicit, individual-based, population model of animal dispersal through realistic landscapes. SEARCH uses values in Geographic Information System (GIS) maps to apply rules that animals follow during dispersal, thus allowing virtual animals to respond to fine-scale features of the landscape and maintain a detailed memory of areas sensed during movement. SEARCH also incorporates temporally dynamic landscapes so that the environment to which virtual animals respond can change during the course of a simulation. Animals in SEARCH are behaviorally dynamic and able to respond to stimuli based upon their individual experiences. Therefore, SEARCH is able to model behavioral traits of dispersing animals at fine scales and with many dynamic aspects. Such added complexity allows investigation of unique ecological questions. To illustrate SEARCH's capabilities, we simulated case studies using three mammals. We examined the impact of seasonally variable food resources on the weight distribution of dispersing raccoons (Procyon lotor), the effect of temporally dynamic mortality pressure in combination with various levels of behavioral responsiveness in eastern chipmunks (Tamias striatus), and the impact of behavioral plasticity and home range selection on disperser mortality and weight change in virtual American martens (Martes americana). These simulations highlight the relevance of SEARCH for a variety of applications and illustrate benefits it can provide for conservation planning.


Assuntos
Ecossistema , Animais , Comportamento Animal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...