Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neuroimmune Pharmacol ; 19(1): 28, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38862787

RESUMO

Despite antiretroviral therapy (ART), HIV-associated peripheral neuropathy remains one of the most prevalent neurologic manifestations of HIV infection. The spinal cord is an essential component of sensory pathways, but spinal cord sampling and evaluation in people with HIV has been very limited, especially in those on ART. The SIV/macaque model allows for assessment of the spinal cord at key time points throughout infection with and without ART. In this study, RNA was isolated from the spinal cord of uninfected, SIV+, and SIV + ART animals to track alterations in gene expression using global RNA-seq. Next, the SeqSeek platform was used to map changes in gene expression to specific cell types. Pathway analysis of differentially expressed genes demonstrated that highly upregulated genes in SIV-infected spinal cord aligned with interferon and viral response pathways. Additionally, this upregulated gene set significantly overlapped with those expressed in myeloid-derived cells including microglia. Downregulated genes were involved in cholesterol and collagen biosynthesis, and TGF-b regulation of extracellular matrix. In contrast, enriched pathways identified in SIV + ART animals included neurotransmitter receptors and post synaptic signaling regulators, and transmission across chemical synapses. SeqSeek analysis showed that upregulated genes were primarily expressed by neurons rather than glia. These findings indicate that pathways activated in the spinal cord of SIV + ART macaques are predominantly involved in neuronal signaling rather than proinflammatory pathways. This study provides the basis for further evaluation of mechanisms of SIV infection + ART within the spinal cord with a focus on therapeutic interventions to maintain synaptodendritic homeostasis.


Assuntos
Neuroglia , Neurônios , Síndrome de Imunodeficiência Adquirida dos Símios , Medula Espinal , Animais , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Medula Espinal/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/virologia , Neuroglia/metabolismo , Neuroglia/efeitos dos fármacos , Neuroglia/virologia , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/virologia , Antirretrovirais/uso terapêutico , Antirretrovirais/farmacologia , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Macaca mulatta , Expressão Gênica/efeitos dos fármacos , Masculino , Regulação da Expressão Gênica/efeitos dos fármacos
2.
Am J Pathol ; 192(2): 195-207, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34767812

RESUMO

To catalyze severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) research, including development of novel interventive and preventive strategies, the progression of disease was characterized in a robust coronavirus disease 2019 (COVID-19) animal model. In this model, male and female golden Syrian hamsters were inoculated intranasally with SARS-CoV-2 USA-WA1/2020. Groups of inoculated and mock-inoculated uninfected control animals were euthanized at 2, 4, 7, 14, and 28 days after inoculation to track multiple clinical, pathology, virology, and immunology outcomes. SARS-CoV-2-inoculated animals consistently lost body weight during the first week of infection, had higher lung weights at terminal time points, and developed lung consolidation per histopathology and quantitative image analysis measurements. High levels of infectious virus and viral RNA were reliably present in the respiratory tract at days 2 and 4 after inoculation, corresponding with widespread necrosis and inflammation. At day 7, when the presence of infectious virus was rare, interstitial and alveolar macrophage infiltrates and marked reparative epithelial responses (type II hyperplasia) dominated in the lung. These lesions resolved over time, with only residual epithelial repair evident by day 28 after inoculation. The use of quantitative approaches to measure cellular and morphologic alterations in the lung provides valuable outcome measures for developing therapeutic and preventive interventions for COVID-19 using the hamster COVID-19 model.


Assuntos
COVID-19/patologia , Animais , COVID-19/virologia , Cricetinae , Modelos Animais de Doenças , Feminino , Pulmão/patologia , Masculino , Mesocricetus , SARS-CoV-2
3.
Cornea ; 40(5): 635-642, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33528225

RESUMO

PURPOSE: To characterize corneal subbasal nerve plexus features of normal and simian immunodeficiency virus (SIV)-infected macaques by combining in vivo corneal confocal microscopy (IVCM) with automated assessments using deep learning-based methods customized for macaques. METHODS: IVCM images were collected from both male and female age-matched rhesus and pigtailed macaques housed at the Johns Hopkins University breeding colony using the Heidelberg HRTIII with Rostock Corneal Module. We also obtained repeat IVCM images of 12 SIV-infected animals including preinfection and 10-day post-SIV infection time points. All IVCM images were analyzed using a deep convolutional neural network architecture developed specifically for macaque studies. RESULTS: Deep learning-based segmentation of subbasal nerves in IVCM images from macaques demonstrated that corneal nerve fiber length and fractal dimension measurements did not differ between species, but pigtailed macaques had significantly higher baseline corneal nerve fiber tortuosity than rhesus macaques (P = 0.005). Neither sex nor age of macaques was associated with differences in any of the assessed corneal subbasal nerve parameters. In the SIV/macaque model of human immunodeficiency virus, acute SIV infection induced significant decreases in both corneal nerve fiber length and fractal dimension (P = 0.01 and P = 0.008, respectively). CONCLUSIONS: The combination of IVCM and robust objective deep learning analysis is a powerful tool to track sensory nerve damage, enabling early detection of neuropathy. Adapting deep learning analyses to clinical corneal nerve assessments will improve monitoring of small sensory nerve fiber damage in numerous clinical settings including human immunodeficiency virus.


Assuntos
Córnea/inervação , Aprendizado Profundo , Infecções Oculares Virais/diagnóstico , Microscopia Confocal , Fibras Nervosas/patologia , Síndrome de Imunodeficiência Adquirida dos Símios/diagnóstico , Vírus da Imunodeficiência Símia/patogenicidade , Doenças do Nervo Trigêmeo/diagnóstico , Doença Aguda , Animais , Córnea/diagnóstico por imagem , Modelos Animais de Doenças , Infecções Oculares Virais/virologia , Feminino , Humanos , Macaca mulatta , Macaca nemestrina , Masculino , Pessoa de Meia-Idade , Fibras Nervosas/virologia , Redes Neurais de Computação , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/genética , Doenças do Nervo Trigêmeo/virologia
4.
J Neurovirol ; 26(4): 511-519, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32488843

RESUMO

HIV-associated neuroinflammation is primarily driven by CNS macrophages including microglia. Regulation of these immune responses, however, remains to be characterized in detail. Using the SIV/macaque model of HIV, we evaluated CNS expression of triggering receptor expressed on myeloid cells 2 (TREM2) which is constitutively expressed by microglia and contributes to cell survival, proliferation, and differentiation. Loss-of-function mutations in TREM2 are recognized risk factors for neurodegenerative diseases including Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and Nasu-Hakola disease (NHD); recent reports have also indicated a role for TREM2 in HIV-associated neuroinflammation. Using in situ hybridization (ISH) and qRT-PCR, TREM2 mRNA levels were found to be significantly elevated in frontal cortex of macaques with SIV encephalitis compared with uninfected controls (P = 0.02). TREM2 protein levels were also elevated as measured by ELISA of frontal cortex tissue homogenates in these animals. Previously, we characterized the expression of CSF1R (colony-stimulating factor 1 receptor) in this model; the TREM2 and CSF1R promoters both contain a PU.1 binding site. While TREM2 and CSF1R mRNA levels in the frontal cortex were highly correlated (Spearman R = 0.79, P < 0.001), protein levels were not well correlated. In SIV-infected macaques released from ART to study viral rebound, neither TREM2 nor CSF1R mRNA increased with rebound viremia. However, CSF1R protein levels remained significantly elevated unlike TREM2 (P = 0.02). This differential expression suggests that TREM2 and CSF1R play unique, distinct roles in the pathogenesis of HIV CNS disease.


Assuntos
Encefalite Viral/genética , Macaca nemestrina/imunologia , Macrófagos/imunologia , Glicoproteínas de Membrana/genética , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Vírus da Imunodeficiência Símia/imunologia , Animais , Terapia Antirretroviral de Alta Atividade/métodos , Antivirais/farmacologia , Esquema de Medicação , Encefalite Viral/tratamento farmacológico , Encefalite Viral/imunologia , Encefalite Viral/virologia , Lobo Frontal/efeitos dos fármacos , Lobo Frontal/imunologia , Lobo Frontal/virologia , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Macaca nemestrina/genética , Macaca nemestrina/virologia , Macrófagos/efeitos dos fármacos , Macrófagos/virologia , Masculino , Glicoproteínas de Membrana/imunologia , Microglia/efeitos dos fármacos , Microglia/imunologia , Microglia/virologia , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/imunologia , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Vírus da Imunodeficiência Símia/crescimento & desenvolvimento , Transativadores/genética , Transativadores/imunologia
5.
Eye Vis (Lond) ; 7: 27, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32420401

RESUMO

BACKGROUND: To develop and validate a deep learning-based approach to the fully-automated analysis of macaque corneal sub-basal nerves using in vivo confocal microscopy (IVCM). METHODS: IVCM was used to collect 108 images from 35 macaques. 58 of the images from 22 macaques were used to evaluate different deep convolutional neural network (CNN) architectures for the automatic analysis of sub-basal nerves relative to manual tracings. The remaining images were used to independently assess correlations and inter-observer performance relative to three readers. RESULTS: Correlation scores using the coefficient of determination between readers and the best CNN averaged 0.80. For inter-observer comparison, inter-correlation coefficients (ICCs) between the three expert readers and the automated approach were 0.75, 0.85 and 0.92. The ICC between all four observers was 0.84, the same as the average between the CNN and individual readers. CONCLUSIONS: Deep learning-based segmentation of sub-basal nerves in IVCM images shows high to very high correlation to manual segmentations in macaque data and is indistinguishable across readers. As quantitative measurements of corneal sub-basal nerves are important biomarkers for disease screening and management, the reported work offers utility to a variety of research and clinical studies using IVCM.

6.
Invest Ophthalmol Vis Sci ; 60(15): 4972-4984, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31790560

RESUMO

Purpose: The subbasal nerve plexus (SNP) is the densest and most recognizable component of the mammalian corneal innervation; however, the anatomical configuration of the SNP in most animal models remains incompletely described. The purpose of the current study is to describe in detail the SNP architecture in eight different mammals, including several popular animal models used in cornea research. Methods: Corneal nerves in mouse, rat, guinea pig, rabbit, dog, macaque, domestic pig, and cow eyes were stained immunohistochemically with antiserum directed against neurotubulin. SNP architecture was documented by digital photomicrography and large-scale reconstructions, that is, corneal nerve maps, using a drawing tube attached to a light microscope. Results: Subbasal nerve fibers (SNFs) in mice, rats, guinea pigs, dogs, and macaques radiated centrally from the corneoscleral limbus toward the corneal apex in a whorl-like or spiraling pattern. SNFs in rabbit and bovine corneas swept horizontally across the ocular surface in a temporal-to-nasal direction and converged on the inferonasal limbus without forming a spiral. SNFs in the pig cornea radiated centrifugally in all directions, like a starburst, from a focal point located equidistant between the corneal apex and the superior pole. Conclusions: The results of the present study have demonstrated for the first time substantial interspecies differences in the architectural organization of the mammalian SNP. The physiological significance of these different patterns and the mechanisms that regulate SNP pattern formation in the mammalian cornea remain incompletely understood and warrant additional investigation.


Assuntos
Anatomia Comparada , Córnea/inervação , Nervo Oftálmico/anatomia & histologia , Animais , Bovinos , Cães , Cobaias , Macaca , Camundongos , Microscopia Confocal , Modelos Animais , Fibras Nervosas , Coelhos , Ratos , Suínos , Gânglio Trigeminal/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...