Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (208)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38912781

RESUMO

The body size and composition assessment is commonly included in the routine management of healthy athletes as well as of different types of patients to personalize the training or rehabilitation strategy. The digital anthropometric analyses described in the following protocol can be performed with recently introduced systems. These new tools and approaches have the potential to be widely used in clinical settings because they are very simple to operate and enable the rapid collection of accurate and reproducible data. One system consists of a rotating platform with a weight measurement plate, three infrared cameras, and a tablet built into a tower, while the other system consists of a tablet mounted on a holder. After image capture, the software of both systems generates a de-identified three-dimensional humanoid avatar with associated anthropometric and body composition variables. The measurement procedures are simple: a subject can be tested in a few minutes and a comprehensive report (including the three-dimensional scan and body size, shape, and composition measurements) is automatically generated.


Assuntos
Antropometria , Composição Corporal , Imageamento Tridimensional , Humanos , Imageamento Tridimensional/métodos , Antropometria/métodos , Imagem Óptica/métodos
2.
Obesity (Silver Spring) ; 32(1): 32-40, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37807154

RESUMO

OBJECTIVE: This study's objective was to develop models predicting the relative reduction in skeletal muscle (SM) mass during periods of voluntary calorie restriction (CR) and to validate model predictions in longitudinally monitored samples. METHODS: The model development group included healthy nonexercising adults (n = 897) who had whole-body SM mass measured with magnetic resonance imaging. Model predictions of relative SM changes with CR were evaluated in two longitudinal studies, one 12 to 14 weeks in duration (n = 74) and the other 12 months in duration (n = 26). RESULTS: A series of SM prediction models were developed in a sample of 415 males and 482 females. Model-predicted changes in SM mass relative to changes in body weight (i.e., ΔSM/Δbody weight) with a representative model were (mean ± SE) 0.26 ± 0.013 in males and 0.14 ± 0.007 in females (sex difference, p < 0.001). The actual mean proportions of weight loss as SM in the longitudinal studies were 0.23 ± 0.02/0.20 ± 0.06 in males and 0.10 ± 0.02/0.17 ± 0.03 in females, similar to model-predicted values. CONCLUSIONS: Nonelderly males and females with overweight and obesity experience respective reductions in SM mass with voluntary CR in the absence of a structured exercise program of about 2 to 2.5 kg and 1 to 1.5 kg per 10-kg weight loss, respectively. These estimates are predicted to be influenced by interactions between age and body mass index in males, a hypothesis that needs future testing.


Assuntos
Restrição Calórica , Redução de Peso , Adulto , Humanos , Masculino , Feminino , Redução de Peso/fisiologia , Obesidade/metabolismo , Sobrepeso/metabolismo , Músculo Esquelético/metabolismo , Índice de Massa Corporal , Composição Corporal
3.
Eur J Clin Nutr ; 78(5): 452-454, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38142263

RESUMO

Currently available anthropometric body composition prediction equations were often developed on small participant samples, included only several measured predictor variables, or were prepared using conventional statistical regression methods. Machine learning approaches are increasingly publicly available and have key advantages over statistical modeling methods when developing prediction algorithms on large datasets with multiple complex covariates. This study aimed to test the feasibility of predicting DXA-measured appendicular lean mass (ALM) with a neural network (NN) algorithm developed on a sample of 576 participants using 10 demographic (sex, age, 7 ethnic groupings) and 43 anthropometric dimensions generated with a 3D optical scanner. NN-predicted and measured ALM were highly correlated (n = 116; R2, 0.95, p < 0.001, non-significant bias) with small mean, absolute, and root-mean square errors (X ± SD, -0.17 ± 1.64 kg and 1.28 ± 1.04 kg; 1.64). These observations demonstrate the application of NN body composition prediction algorithms to rapidly emerging large and complex digital anthropometric datasets. Clinical Trial Registration: NCT03637855, NCT05217524, NCT03771417, and NCT03706612.


Assuntos
Algoritmos , Antropometria , Composição Corporal , Redes Neurais de Computação , Adolescente , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Absorciometria de Fóton/métodos , Antropometria/métodos
4.
Am J Clin Nutr ; 118(4): 812-821, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37598747

RESUMO

BACKGROUND: New recommendations for the assessment of malnutrition and sarcopenia include body composition, specifically reduced muscle mass. Three-dimensional optical imaging (3DO) is a validated, accessible, and affordable alternative to dual X-ray absorptiometry (DXA). OBJECTIVE: Identify strengths and weaknesses of 3DO for identification of malnutrition in participants with low body mass index (BMI) and eating disorders. DESIGN: Participants were enrolled in the cross-sectional Shape Up! Adults and Kids studies of body shape, metabolic risk, and functional assessment and had BMI of <20 kg/m2 in adults or <85% of median BMI (mBMI) in children and adolescents. A subset was referred for eating disorders evaluation. Anthropometrics, scans, strength testing, and questionnaires were completed in clinical research centers. Lin's Concordance Correlation Coefficient (CCC) assessed agreement between 3DO and DXA; multivariate linear regression analysis examined associations between weight history and body composition. RESULTS: Among 95 participants, mean ± SD BMI was 18.3 ± 1.4 kg/m2 in adult women (N = 56), 19.0 ± 0.6 in men (N = 14), and 84.2% ± 4.1% mBMI in children (N = 25). Concordance was excellent for fat-free mass (FFM, CCC = 0.97) and strong for appendicular lean mass (ALM, CCC = 0.86) and fat mass (FM, CCC = 0.87). By DXA, 80% of adults met the low FFM index criterion for malnutrition, and 44% met low ALM for sarcopenia; 52% of children and adolescents were <-2 z-score for FM. 3DO identified 95% of these cases. In the subset, greater weight loss predicted lower FFM, FM, and ALM by both methods; a greater percentage of weight regained predicted a higher percentage of body fat. CONCLUSIONS: 3DO can accurately estimate body composition in participants with low BMI and identify criteria for malnutrition and sarcopenia. In a subset, 3DO detected changes in body composition expected with weight loss and regain secondary to eating disorders. These findings support the utility of 3DO for body composition assessment in patients with low BMI, including those with eating disorders. This trial was registered at clinicaltrials.gov as NCT03637855.


Assuntos
Transtornos da Alimentação e da Ingestão de Alimentos , Desnutrição , Sarcopenia , Adulto , Masculino , Criança , Adolescente , Humanos , Feminino , Índice de Massa Corporal , Composição Corporal/fisiologia , Desnutrição/diagnóstico , Absorciometria de Fóton/métodos , Redução de Peso
6.
Clin Nutr ; 42(9): 1619-1630, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37481870

RESUMO

BACKGROUND: Excess adiposity in children is strongly correlated with obesity-related metabolic disease in adulthood, including diabetes, cardiovascular disease, and 13 types of cancer. Despite the many long-term health risks of childhood obesity, body mass index (BMI) Z-score is typically the only adiposity marker used in pediatric studies and clinical applications. The effects of regional adiposity are not captured in a single scalar measurement, and their effects on short- and long-term metabolic health are largely unknown. However, clinicians and researchers rarely deploy gold-standard methods for measuring compartmental fat such as magnetic resonance imaging (MRI) and dual X-ray absorptiometry (DXA) on children and adolescents due to cost or radiation concerns. Three-dimensional optical (3DO) scans are relatively inexpensive to obtain and use non-invasive and radiation-free imaging techniques to capture the external surface geometry of a patient's body. This 3D shape contains cues about the body composition that can be learned from a structured correlation between 3D body shape parameters and reference DXA scans obtained on a sample population. STUDY AIM: This study seeks to introduce a radiation-free, automated 3D optical imaging solution for monitoring body shape and composition in children aged 5-17. METHODS: We introduce an automated, linear learning method to predict total and regional body composition of children aged 5-17 from 3DO scans. We collected 145 male and 206 female 3DO scans on children between the ages of 5 and 17 with three scanners from independent manufacturers. We used an automated shape templating method first introduced on an adult population to fit a topologically consistent 60,000 vertex (60 k) mesh to 3DO scans of arbitrary scanning source and mesh topology. We constructed a parameterized body shape space using principal component analysis (PCA) and estimated a regression matrix between the shape parameters and their associated DXA measurements. We automatically fit scans of 30 male and 38 female participants from a held-out test set and predicted 12 body composition measurements. RESULTS: The coefficient of determination (R2) between 3DO predicted body composition and DXA measurements was at least 0.85 for all measurements with the exception of visceral fat on 3D scan predictions. Precision error was 1-4 times larger than that of DXA. No predicted variable was significantly different from DXA measurement except for male trunk lean mass. CONCLUSION: Optical imaging can quickly, safely, and inexpensively estimate regional body composition in children aged 5-17. Frequent repeat measurements can be taken to chart changes in body adiposity over time without risk of radiation overexposure.


Assuntos
Obesidade Infantil , Adulto , Adolescente , Humanos , Criança , Masculino , Feminino , Pré-Escolar , Obesidade Infantil/diagnóstico por imagem , Composição Corporal , Índice de Massa Corporal , Absorciometria de Fóton/métodos , Adiposidade
7.
Am J Clin Nutr ; 118(3): 657-671, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37474106

RESUMO

BACKGROUND: The obesity epidemic brought a need for accessible methods to monitor body composition, as excess adiposity has been associated with cardiovascular disease, metabolic disorders, and some cancers. Recent 3-dimensional optical (3DO) imaging advancements have provided opportunities for assessing body composition. However, the accuracy and precision of an overall 3DO body composition model in specific subgroups are unknown. OBJECTIVES: This study aimed to evaluate 3DO's accuracy and precision by subgroups of age, body mass index, and ethnicity. METHODS: A cross-sectional analysis was performed using data from the Shape Up! Adults study. Each participant received duplicate 3DO and dual-energy X-ray absorptiometry (DXA) scans. 3DO meshes were digitally registered and reposed using Meshcapade. Principal component analysis was performed on 3DO meshes. The resulting principal components estimated DXA whole-body and regional body composition using stepwise forward linear regression with 5-fold cross-validation. Duplicate 3DO and DXA scans were used for test-retest precision. Student's t tests were performed between 3DO and DXA by subgroup to determine significant differences. RESULTS: Six hundred thirty-four participants (females = 346) had completed the study at the time of the analysis. 3DO total fat mass in the entire sample achieved R2 of 0.94 with root mean squared error (RMSE) of 2.91 kg compared to DXA in females and similarly in males. 3DO total fat mass achieved a % coefficient of variation (RMSE) of 1.76% (0.44 kg), whereas DXA was 0.98% (0.24 kg) in females and similarly in males. There were no mean differences for total fat, fat-free, percent fat, or visceral adipose tissue by age group (P > 0.068). However, there were mean differences for underweight, Asian, and Black females as well as Native Hawaiian or other Pacific Islanders (P < 0.038). CONCLUSIONS: A single 3DO body composition model produced accurate and precise body composition estimates that can be used on diverse populations. However, adjustments to specific subgroups may be warranted to improve the accuracy in those that had significant differences. This trial was registered at clinicaltrials.gov as NCT03637855 (Shape Up! Adults).


Assuntos
Composição Corporal , Etnicidade , Adulto , Feminino , Humanos , Masculino , Absorciometria de Fóton/métodos , Índice de Massa Corporal , Estudos Transversais , Obesidade/diagnóstico por imagem , Imagem Óptica
9.
Am J Clin Nutr ; 117(4): 794-801, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36822238

RESUMO

BACKGROUND: Skeletal muscle is a large and clinically relevant body component that has been difficult and impractical to quantify outside of specialized facilities. Advances in smartphone technology now provide the opportunity to quantify multiple body surface dimensions such as circumferences, lengths, surface areas, and volumes. OBJECTIVES: This study aimed to test the hypothesis that anthropometric body measurements acquired with a smartphone application can be used to accurately estimate an adult's level of muscularity. METHODS: Appendicular lean mass (ALM) measured by DXA served as the reference for muscularity in a sample of 322 adults. Participants also had digital anthropometric dimensions (circumferences, lengths, and regional and total body surface areas and volumes) quantified with a 20-camera 3D imaging system. Least absolute shrinkage and selection operator (LASSO) regression procedures were used to develop the ALM prediction equations in a portion of the sample, and these models were tested in the remainder of the sample. Then, the accuracy of the prediction models was cross-validated in a second independent sample of 53 adults who underwent ALM estimation by DXA and the same digital anthropometric estimates acquired with a smartphone application. RESULTS: LASSO models included multiple significant demographic and 3D digital anthropometric predictor variables. Evaluation of the models in the testing sample indicated respective RMSEs in women and men of 1.56 kg and 1.53 kg and R2's of 0.74 and 0.90, respectively. Cross-validation of the LASSO models in the smartphone application group yielded RMSEs in women and men of 1.78 kg and 1.50 kg and R2's of 0.79 and 0.95; no significant differences or bias between measured and predicted ALM values were observed. CONCLUSIONS: Smartphone image capture capabilities combined with device software applications can now provide accurate renditions of the adult muscularity phenotype outside of specialized laboratory facilities. Am J Clin Nutr 2023;x:xx. This trial was registered at clinicaltrials.gov as NCT03637855 (https://clinicaltrials.gov/ct2/show/NCT03637855), NCT05217524 (https://clinicaltrials.gov/ct2/show/NCT05217524), and NCT03771417 (https://clinicaltrials.gov/ct2/show/NCT03771417).


Assuntos
Composição Corporal , Smartphone , Feminino , Humanos , Absorciometria de Fóton/métodos , Antropometria/métodos , Músculo Esquelético
10.
Sci Rep ; 13(1): 2590, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36788294

RESUMO

Sarcopenia, sarcopenic obesity, frailty, and cachexia have in common skeletal muscle (SM) as a main component of their pathophysiology. The reference method for SM mass measurement is whole-body magnetic resonance imaging (MRI), although dual-energy X-ray absorptiometry (DXA) appendicular lean mass (ALM) serves as an affordable and practical SM surrogate. Empirical equations, developed on relatively small and diverse samples, are now used to predict total body SM from ALM and other covariates; prediction models for extremity SM mass are lacking. The aim of the current study was to develop and validate total body, arm, and leg SM mass prediction equations based on a large sample (N = 475) of adults evaluated with whole-body MRI and DXA for SM and ALM, respectively. Initial models were fit using ordinary least squares stepwise selection procedures; covariates beyond extremity lean mass made only small contributions to the final models that were developed using Deming regression. All three developed final models (total, arm, and leg) had high R2s (0.88-0.93; all p < 0.001) and small root-mean square errors (1.74, 0.41, and 0.95 kg) with no bias in the validation sample (N = 95). The new total body SM prediction model (SM = 1.12 × ALM - 0.63) showed good performance, with some bias, against previously reported DXA-ALM prediction models. These new total body and extremity SM prediction models, developed and validated in a large sample, afford an important and practical opportunity to evaluate SM mass in research and clinical settings.


Assuntos
Imageamento por Ressonância Magnética , Sarcopenia , Humanos , Adulto , Absorciometria de Fóton/métodos , Imagem Corporal Total , Composição Corporal , Sarcopenia/diagnóstico por imagem , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiologia
11.
Am J Clin Nutr ; 117(4): 802-813, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36796647

RESUMO

BACKGROUND: Recent 3-dimensional optical (3DO) imaging advancements have provided more accessible, affordable, and self-operating opportunities for assessing body composition. 3DO is accurate and precise in clinical measures made by DXA. However, the sensitivity for monitoring body composition change over time with 3DO body shape imaging is unknown. OBJECTIVES: This study aimed to evaluate the ability of 3DO in monitoring body composition changes across multiple intervention studies. METHODS: A retrospective analysis was performed using intervention studies on healthy adults that were complimentary to the cross-sectional study, Shape Up! Adults. Each participant received a DXA (Hologic Discovery/A system) and 3DO (Fit3D ProScanner) scan at the baseline and follow-up. 3DO meshes were digitally registered and reposed using Meshcapade to standardize the vertices and pose. Using an established statistical shape model, each 3DO mesh was transformed into principal components, which were used to predict whole-body and regional body composition values using published equations. Body composition changes (follow-up minus the baseline) were compared with those of DXA using a linear regression analysis. RESULTS: The analysis included 133 participants (45 females) in 6 studies. The mean (SD) length of follow-up was 13 (5) wk (range: 3-23 wk). Agreement between 3DO and DXA (R2) for changes in total FM, total FFM, and appendicular lean mass were 0.86, 0.73, and 0.70, with root mean squared errors (RMSEs) of 1.98 kg, 1.58 kg, and 0.37 kg, in females and 0.75, 0.75, and 0.52 with RMSEs of 2.31 kg, 1.77 kg, and 0.52 kg, in males, respectively. Further adjustment with demographic descriptors improved the 3DO change agreement to changes observed with DXA. CONCLUSIONS: Compared with DXA, 3DO was highly sensitive in detecting body shape changes over time. The 3DO method was sensitive enough to detect even small changes in body composition during intervention studies. The safety and accessibility of 3DO allows users to self-monitor on a frequent basis throughout interventions. This trial was registered at clinicaltrials.gov as NCT03637855 (Shape Up! Adults; https://clinicaltrials.gov/ct2/show/NCT03637855); NCT03394664 (Macronutrients and Body Fat Accumulation: A Mechanistic Feeding Study; https://clinicaltrials.gov/ct2/show/NCT03394664); NCT03771417 (Resistance Exercise and Low-Intensity Physical Activity Breaks in Sedentary Time to Improve Muscle and Cardiometabolic Health; https://clinicaltrials.gov/ct2/show/NCT03771417); NCT03393195 (Time Restricted Eating on Weight Loss; https://clinicaltrials.gov/ct2/show/NCT03393195), and NCT04120363 (Trial of Testosterone Undecanoate for Optimizing Performance During Military Operations; https://clinicaltrials.gov/ct2/show/NCT04120363).


Assuntos
Composição Corporal , Imagem Óptica , Masculino , Adulto , Feminino , Humanos , Absorciometria de Fóton/métodos , Estudos Transversais , Estudos Retrospectivos , Composição Corporal/fisiologia , Impedância Elétrica , Índice de Massa Corporal
12.
Eur J Clin Nutr ; 77(5): 525-531, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36076068

RESUMO

BACKGROUND/OBJECTIVES: Fat-free mass (FFM) often serves as a body composition outcome variable in weight loss studies. An important assumption is that the proportions of components that make up FFM remain stable following weight loss; some body composition models rely on these "constants". This exploratory study examined key FFM component proportions before and following weight loss in two studies of participants with overweight and obesity. SUBJECTS/METHODS: 201 men and women consumed calorie-restricted moderate- or very-low carbohydrate diets leading to 10-18% weight loss in 9-15 weeks. Measured total body fat, lean mass, bone mineral, total body water (TBW), and body weight at baseline and follow-up were used to derive FFM and its chemical proportions using a four-component model. RESULTS: A consistent finding in both studies was a non-significant reduction in bone mineral and a corresponding increase (p < 0.001) in bone mineral/FFM; FFM density increased significantly in one group of women and in all four participant groups combined (both, p < 0.05). FFM hydration (TBW/FFM) increased in all groups of men and women, one significantly (p < 0.01), and in the combined sample (borderline, p < 0.10). The proportion of FFM as protein decreased across all groups, two significantly (p < 0.05-0.01) and in the combined sample (p < 0.05). CONCLUSION: FFM relative proportions of chemical components may not be identical before and after short-term weight loss, an observation impacting some widely used body composition models and methods. Caution is thus needed when applying FFM as a safety signal or to index metabolic evaluations in clinical trials when these body composition approaches are used.


Assuntos
Composição Corporal , Obesidade , Masculino , Humanos , Feminino , Sobrepeso , Dieta Redutora , Redução de Peso
13.
J Cachexia Sarcopenia Muscle ; 13(6): 2595-2607, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36059250

RESUMO

The French chemist Michel Eugène Chevreul discovered creatine in meat two centuries ago. Extensive biochemical and physiological studies of this organic molecule followed with confirmation that creatine is found within the cytoplasm and mitochondria of human skeletal muscles. Two groups of investigators exploited these relationships five decades ago by first estimating the creatine pool size in vivo with 14 C and 15 N labelled isotopes. Skeletal muscle mass (kg) was then calculated by dividing the creatine pool size (g) by muscle creatine concentration (g/kg) measured on a single muscle biopsy or estimated from the literature. This approach for quantifying skeletal muscle mass is generating renewed interest with the recent introduction of a practical stable isotope (creatine-(methyl-d3 )) dilution method for estimating the creatine pool size across the full human lifespan. The need for a muscle biopsy has been eliminated by assuming a constant value for whole-body skeletal muscle creatine concentration of 4.3 g/kg wet weight. The current single compartment model of estimating creatine pool size and skeletal muscle mass rests on four main assumptions: tracer absorption is complete; tracer is all retained; tracer is distributed solely in skeletal muscle; and skeletal muscle creatine concentration is known and constant. Three of these assumptions are false to varying degrees. Not all tracer is retained with urinary isotope losses ranging from 0% to 9%; an empirical equation requiring further validation is used to correct for spillage. Not all tracer is distributed in skeletal muscle with non-muscle creatine sources ranging from 2% to 10% with a definitive value lacking. Lastly, skeletal muscle creatine concentration is not constant and varies between muscles (e.g. 3.89-4.62 g/kg), with diets (e.g. vegetarian and omnivore), across age groups (e.g. middle-age, ~4.5 g/kg; old-age, 4.0 g/kg), activity levels (e.g. athletes, ~5 g/kg) and in disease states (e.g. muscular dystrophies, <3 g/kg). Some of the variability in skeletal muscle creatine concentrations can be attributed to heterogeneity in the proportions of wet skeletal muscle as myofibres, connective tissues, and fat. These observations raise serious concerns regarding the accuracy of the deuterated-creatine dilution method for estimating total body skeletal muscle mass as now defined by cadaver analyses of whole wet tissues and in vivo approaches such as magnetic resonance imaging. A new framework is needed in thinking about how this potentially valuable method for measuring the creatine pool size in vivo can be used in the future to study skeletal muscle biology in health and disease.


Assuntos
Creatina , Músculo Esquelético , Pessoa de Meia-Idade , Humanos , Pré-Escolar , Técnicas de Diluição do Indicador , Músculo Esquelético/patologia , Atletas , Imageamento por Ressonância Magnética
14.
Am J Clin Nutr ; 116(5): 1418-1429, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35883219

RESUMO

BACKGROUND: Novel advancements in wearable technologies include continuous measurement of body composition via smart watches. The accuracy and stability of these devices are unknown. OBJECTIVES: This study evaluated smart watches with integrated bioelectrical impedance analysis (BIA) sensors for their ability to measure and monitor changes in body composition. METHODS: Participants recruited across BMIs received duplicate body composition measures using 2 wearable bioelectrical impedance analysis (W-BIA) model smart watches in sitting and standing positions, and multiple versions of each watch were used to evaluate inter- and intramodel precision. Duplicate laboratory-grade octapolar bioelectrical impedance analysis (8-BIA) and criterion DXA scans were acquired to compare estimates between the watches and laboratory methods. Test-retest precision and least significant changes assessed the ability to monitor changes in body composition. RESULTS: Of 109 participants recruited, 75 subjects completed the full manufacturer-recommended protocol. No significant differences were observed between W-BIA watches in position or between watch models. Significant fat-free mass (FFM) differences (P < 0.05) were observed between both W-BIA and 8-BIA when compared to DXA, though the systematic biases to the criterion were correctable. No significant difference was observed between the W-BIA and the laboratory-grade BIA technology for FFM (55.3 ± 14.5 kg for W-BIA versus 56.0 ± 13.8 kg for 8-BIA; P > 0.05; Lin's concordance correlation coefficient = 0.97). FFM was less precise on the watches than DXA {CV, 0.7% [root mean square error (RMSE) = 0.4 kg] versus 1.3% (RMSE = 0.7 kg) for W-BIA}, requiring more repeat measures to equal the same confidence in body composition changes over time as DXA. CONCLUSIONS: After systematic correction, smart-watch BIA devices are capable of stable, reliable, and accurate body composition measurements, with precision comparable to but lower than that of laboratory measures. These devices allow for measurement in environments not accessible to laboratory systems, such as homes, training centers, and geographically remote locations.


Assuntos
Composição Corporal , Humanos , Impedância Elétrica , Reprodutibilidade dos Testes , Índice de Massa Corporal , Absorciometria de Fóton
15.
Int J Obes (Lond) ; 46(9): 1587-1590, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35610336

RESUMO

BACKGROUND/OBJECTIVES: Body size and shape have increased over the past several decades with one in five adolescents now having obesity according to objective anthropometric measures such as weight, height, and body mass index (BMI). The gradual physical changes and their consequences may not be fully appreciated upon visual inspection by those managing the long-term health of adolescents. This study aimed to develop humanoid avatars representing the gradual changes in adolescent body size and shape over the past five decades and to align avatars with key BMI percentile cut points for underweight, normal weight, overweight, and obesity. PARTICIPANTS/METHODS: Participants included 223 children and adolescents between the ages of 5 and 18 years approximately representative of the race/ethnicity and BMI of the noninstitutionalized US population. Each participant completed a three-dimensional whole-body scan, and the collected data was used to develop manifold regression models for generating humanoid male and female avatars from specified ages, weights, and heights. Secular changes in the mean weights and heights of adolescents were acquired from six U.S. National Health and Nutrition Surveys beginning in 1971-1974 and ending in 2015-2018. Male and female avatars at two representative ages, 10 and 15 years, were developed for each survey and at the key BMI percentile cut points based on data from the 2015-2018 survey. RESULTS: The subtle changes in adolescent Americans' body size and shape over the past five decades are represented by 24 male and female 10- and 15-year-old avatars and 8 corresponding BMI percentile cut points. CONCLUSIONS: The current study, the first of its kind, aligns objective physical examination weights and heights with the visual appearance of adolescents. Aligning the biometric and visual information may help improve awareness and appropriate clinical management of adolescents with excess adiposity passing through health care systems. TRIAL REGISTRATION: ClinicalTrials.Gov NCT03706612.


Assuntos
Obesidade Infantil , Adolescente , Índice de Massa Corporal , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Inquéritos Nutricionais , Sobrepeso/epidemiologia , Obesidade Infantil/epidemiologia , Prevalência , Magreza , Estados Unidos/epidemiologia
16.
Obesity (Silver Spring) ; 30(6): 1181-1188, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35491718

RESUMO

OBJECTIVE: Three-dimensional (3D) imaging systems are increasingly being used in health care settings for quantifying body size and shape. The potential exists to provide similar phenotyping capabilities outside of professional settings using smartphone applications (apps). The current study aim was to compare waist, hip, upper arm, and midthigh circumference measurements acquired by a free downloadable app (MeThreeSixty; Size Stream, Cary, North Carolina) and a conventional 20-camera 3D system (SS20; Size Stream) with those measured with a flexible tape at the same anatomic sites. METHODS: Fifty-nine adults were scanned with the app and SS20; the same software was used to generate circumference estimates from device-acquired object files that were then compared with reference tape measurements. RESULTS: The app and SS20 had similar coefficients of variation that were minimally larger than those by the tape (e.g., waist, 0.93%, 0.87%, and 0.06%). Correlations of the app and of SS20 with tape circumferences were all strong (p < 0.001) and similar in magnitude (R2 s: 0.72-0.93 and 0.78-0.95, respectively); minimally significant (p < 0.05 to p < 0.01) bias was present between both imaging approaches and some tape measurements. CONCLUSION: These proof-of-concept observations combined with ubiquitous smartphone availability create the possibility of phenotyping adult body size and shape, with important clinical and research implications, on a global scale.


Assuntos
Aplicativos Móveis , Antropometria/métodos , Tamanho Corporal , Smartphone
17.
Am J Clin Nutr ; 115(4): 1189-1193, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35030235

RESUMO

BACKGROUND: Visualizations of the emerging obesity epidemic, such as with serial US color prevalence maps, provide graphic images that extend informative public health messages beyond those in written communications. Advances in low-cost 3D optical technology now allow for development of large image databases that include participants varying in race/ethnicity, body mass, height, age, and circumferences. When combined with contemporary statistical methods, these data sets can be used to create humanoid avatar images with prespecified anthropometric features. OBJECTIVES: The current study aimed to develop a humanoid avatar series with characteristics of representative US adults extending over the past 6 decades. METHODS: 3D optical scans were conducted on a demographically diverse sample of 570 healthy adults. Image data were converted to principal components and manifold regression equations were then developed with body mass, height, age, and waist circumference as covariates. Humanoid avatars were generated for representative adults with these 4 characteristics as reported in CDC surveys beginning in 1960-1962 up to 2015-2018. RESULTS: There was a curvilinear increase in adult US population body mass, waist circumference, and BMI in males and females across the 9 surveys spanning 6 decades. A small increase in average adult population age was present between 1960 and 2018; height changes were inconsistent. A series of 4 avatars developed at ∼20-y intervals for representative males and females reveal the changes in body size and shape consistent with the emergence of the obesity epidemic. An additional series of developed avatars portray the shapes and sizes of males and females at key BMI cutoffs. CONCLUSIONS: New mathematical approaches and accessible 3D optical technology combined with increasingly available large and diverse data sets across the life span now make unique visualization of body size and shape possible on a previously unattainable scale. This study is registered at https://clinicaltrials.gov/ct2/show/NCT03637855 as NCT03637855.


Assuntos
Estatura , Obesidade , Adulto , Antropometria/métodos , Índice de Massa Corporal , Feminino , Humanos , Masculino , Obesidade/epidemiologia , Prevalência , Circunferência da Cintura
18.
Memory ; 28(2): 261-269, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31914856

RESUMO

Long-term memory relies on both accurately retrieving specific details and inhibiting competing information. In the current investigation, we evaluated the specificity of long-term memory representations for faces. During each study phase, participants were presented with neutral Caucasian male and female faces. During the corresponding test phase, old faces, related faces, and new faces were presented and participants made "old"-"new" recognition judgments. Related faces were created by morphing along a continuum in steps of 20% (i.e., 20%, 40%, 60% and 80% morphs) between old faces and new faces (independent ratings indicated that the pairs of to-be-morphed old faces and new faces were perceptually dissimilar). In two experiments, memory representations were very specific as the "old" response rate for old faces was significantly higher than closely related faces (i.e., 20% morphs). Furthermore, there was evidence of memory inhibition, as the "old" response rate for 20% morphs was significantly lower than 40% morphs (the identical pattern of results was observed with a d' analysis). These findings may reflect an evolutionary advantage for recognising specific faces, which may require inhibition of closely related faces.


Assuntos
Reconhecimento Facial/fisiologia , Inibição Psicológica , Memória de Longo Prazo , Reconhecimento Psicológico , Adulto , Feminino , Humanos , Julgamento , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...