Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Signal ; 28(12): 1881-1893, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27592031

RESUMO

Saccharomyces cerevisiae express three isoforms of Snf1 kinase that differ by which ß subunit is present, Gal83, Sip1 or Sip2. Here we investigate the abundance, activation, localization and signaling specificity of the three Snf1 isoforms. The relative abundance of these isoforms was assessed by quantitative immunoblotting using two different protein extraction methods and by fluorescence microscopy. The Gal83 containing isoform is the most abundant in all assays while the abundance of the Sip1 and Sip2 isoforms is typically underestimated especially in glass-bead extractions. Earlier studies to assess Snf1 isoform function utilized gene deletions as a means to inactivate specific isoforms. Here we use point mutations in Gal83 and Sip2 and a 17 amino acid C-terminal truncation of Sip1 to inactivate specific isoforms without affecting their abundance or association with the other subunits. The effect of low glucose and alkaline stresses was examined for two Snf1 phosphorylation substrates, the Mig1 and Mig2 proteins. Any of the three isoforms was capable of phosphorylating Mig1 in response to glucose stress. In contrast, the Gal83 isoform of Snf1 was both necessary and sufficient for the phosphorylation of the Mig2 protein in response to alkaline stress. Alkaline stress led to the activation of all three isoforms yet only the Gal83 isoform translocates to the nucleus and phosphorylates Mig2. Deletion of the SAK1 gene blocked nuclear translocation of Gal83 and signaling to Mig2. These data strongly support the idea that Snf1 signaling specificity is mediated by localization of the different Snf1 isoforms.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Álcalis/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/enzimologia , Estresse Fisiológico/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Sequência Conservada , Ativação Enzimática , Glucose/farmacologia , Histidina/metabolismo , Isoenzimas/metabolismo , Cinética , Proteínas Mutantes/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/química , Subunidades Proteicas/química , Transporte Proteico/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Especificidade por Substrato/efeitos dos fármacos
2.
Biochim Biophys Acta ; 1864(11): 1518-28, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27524664

RESUMO

The AMP-activated protein kinase is a metabolic regulator that transduces information about energy and nutrient availability. In yeast, the AMP-activated protein kinase, called Snf1, is activated when energy and nutrients are scarce. Earlier studies have demonstrated that activation of Snf1 requires the phosphorylation of the activation loop on threonine 210. Here we examined the regulation of Snf1 kinase activity in response to phosphorylation at other sites. Phosphoproteomic studies have identified numerous phosphorylation sites within the Snf1 kinase enzyme. We made amino acid substitutions in the Snf1 protein that were either non-phosphorylatable (serine to alanine) or phospho-mimetic (serine to glutamate) and examined the effects of these changes on Snf1 kinase function in vivo and on its catalytic activity in vitro. We found that changes to most of the phosphorylation sites had no effect on Snf1 kinase function. However, changes to serine 214, a site within the kinase activation loop, inhibited Snf1 kinase activity. Snf1-activating kinase 1 still phosphorylates Snf1-S214E on threonine 210 but the S214E enzyme is non-functional in vivo and catalytically inactive in vitro. We conclude that yeast have developed two distinct pathways for down-regulating Snf1 activity. The first is through direct dephosphorylation of the conserved activation loop threonine. The second is through phosphorylation of serine 214.


Assuntos
Fosfoproteínas/química , Proteínas Serina-Treonina Quinases/química , Saccharomyces cerevisiae/enzimologia , Serina/química , Treonina/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Clonagem Molecular , Sequência Conservada , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Modelos Moleculares , Mutação , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Domínios Proteicos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Serina/metabolismo , Treonina/metabolismo
3.
Mol Cell Biol ; 35(6): 939-55, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25547292

RESUMO

The glucose analog 2-deoxyglucose (2DG) inhibits the growth of Saccharomyces cerevisiae and human tumor cells, but its modes of action have not been fully elucidated. Yeast cells lacking Snf1 (AMP-activated protein kinase) are hypersensitive to 2DG. Overexpression of either of two low-affinity, high-capacity glucose transporters, Hxt1 and Hxt3, suppresses the 2DG hypersensitivity of snf1Δ cells. The addition of 2DG or the loss of Snf1 reduces HXT1 and HXT3 expression levels and stimulates transporter endocytosis and degradation in the vacuole. 2DG-stimulated trafficking of Hxt1 and Hxt3 requires Rod1/Art4 and Rog3/Art7, two members of the α-arrestin trafficking adaptor family. Mutations in ROD1 and ROG3 that block binding to the ubiquitin ligase Rsp5 eliminate Rod1- and Rog3-mediated trafficking of Hxt1 and Hxt3. Genetic analysis suggests that Snf1 negatively regulates both Rod1 and Rog3, but via different mechanisms. Snf1 activated by 2DG phosphorylates Rod1 but fails to phosphorylate other known targets, such as the transcriptional repressor Mig1. We propose a novel mechanism for 2DG-induced toxicity whereby 2DG stimulates the modification of α-arrestins, which promote glucose transporter internalization and degradation, causing glucose starvation even when cells are in a glucose-rich environment.


Assuntos
Arrestina/metabolismo , Desoxiglucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Endocitose/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Glucose/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Transporte Proteico/fisiologia , Ubiquitina/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo
4.
Genetics ; 198(2): 635-46, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25116136

RESUMO

Aerobic glycolysis is a metabolic pathway utilized by human cancer cells and also by yeast cells when they ferment glucose to ethanol. Both cancer cells and yeast cells are inhibited by the presence of low concentrations of 2-deoxyglucose (2DG). Genetic screens in yeast used resistance to 2-deoxyglucose to identify a small set of genes that function in regulating glucose metabolism. A recent high throughput screen for 2-deoxyglucose resistance identified a much larger set of seemingly unrelated genes. Here, we demonstrate that these newly identified genes do not in fact confer significant resistance to 2-deoxyglucose. Further, we show that the relative toxicity of 2-deoxyglucose is carbon source dependent, as is the resistance conferred by gene deletions. Snf1 kinase, the AMP-activated protein kinase of yeast, is required for 2-deoxyglucose resistance in cells growing on glucose. Mutations in the SNF1 gene that reduce kinase activity render cells hypersensitive to 2-deoxyglucose, while an activating mutation in SNF1 confers 2-deoxyglucose resistance. Snf1 kinase activated by 2-deoxyglucose does not phosphorylate the Mig1 protein, a known Snf1 substrate during glucose limitation. Thus, different stimuli elicit distinct responses from the Snf1 kinase.


Assuntos
Desoxiglucose/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Farmacorresistência Fúngica , Epistasia Genética , Deleção de Genes , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/genética , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais
5.
J Biol Chem ; 288(1): 89-98, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23184934

RESUMO

The AMP-activated protein kinase (AMPK) is a conserved signaling molecule in a pathway that maintains adenosine triphosphate homeostasis. Recent studies have suggested that low energy adenylate ligands bound to one or more sites in the γ subunit of AMPK promote the formation of an active, phosphatase-resistant conformation. We propose an alternative model in which the kinase domain association with the heterotrimer core results in activation of the kinase catalytic activity, whereas low energy adenylate ligands bound in the kinase active site promote phosphatase resistance. Purified Snf1 α subunit with a conservative, single amino acid substitution in the kinase domain is protected from dephosphorylation by adenosine diphosphate in the complete absence of the ß and γ subunits. Staurosporine, a compound known to bind to the active site of many protein kinases, mediates strong protection from dephosphorylation to yeast and mammalian AMPK enzymes. The analog-sensitive Snf1-I132G protein but not wild type Snf1 exhibits protection from dephosphorylation when bound by the adenosine analog 2NM-PP1 in vitro and in vivo. These data demonstrate that ligand binding to the Snf1 active site can mediate phosphatase resistance. Finally, Snf1 kinase with an amino acid substitution at the interface of the kinase domain and the heterotrimer core exhibits normal regulation of phosphorylation in vivo but greatly reduced Snf1 kinase activity, supporting a model in which kinase domain association with the heterotrimer core is needed for kinase activation.


Assuntos
Proteínas Quinases Ativadas por AMP/química , Regulação Enzimológica da Expressão Gênica , Schizosaccharomyces/metabolismo , Difosfato de Adenosina/química , Animais , Domínio Catalítico , Inibidores Enzimáticos/farmacologia , Proteínas Fúngicas/química , Humanos , Cinética , Ligantes , Modelos Moleculares , Conformação Molecular , Mutação , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/química , Estrutura Terciária de Proteína , Ratos , Schizosaccharomyces/química , Transdução de Sinais , Estaurosporina/farmacologia , Especificidade por Substrato
6.
J Biol Chem ; 286(52): 44532-41, 2011 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-22065577

RESUMO

Members of the AMP-activated protein kinase (AMPK) family are activated by phosphorylation at a conserved threonine residue in the activation loop of the kinase domain. Mammalian AMPK adopts a phosphatase-resistant conformation that is stabilized by binding low energy adenylate molecules. Similarly, binding of ADP to the Snf1 complex, yeast AMPK, protects the kinase from dephosphorylation. Here, we determined the nucleotide specificity of the ligand-mediated protection from dephosphorylation and demonstrate the subunit and domain requirements for this reaction. Protection from dephosphorylation was highly specific for adenine nucleotides, with ADP being the most effective ligand for mediating protection. The full-length α subunit (Snf1) was not competent for ADP-mediated protection, confirming the requirement for the regulatory ß and γ subunits. However, Snf1 heterotrimeric complexes that lacked either the glycogen-binding domain of Gal83 or the linker region of the α subunit were competent for ADP-mediated protection. In contrast, adenylate-mediated protection of recombinant human AMPK was abolished when a portion of the linker region containing the α-hook domain was deleted. Therefore, the exact means by which the different adenylate nucleotides are distinguished by the Snf1 enzyme may differ compared with its mammalian ortholog.


Assuntos
Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Quinases Proteína-Quinases Ativadas por AMP , Difosfato de Adenosina/química , Difosfato de Adenosina/genética , Monofosfato de Adenosina/química , Monofosfato de Adenosina/genética , Domínio Catalítico , Humanos , Fosforilação/fisiologia , Proteínas Quinases/química , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Estrutura Secundária de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
7.
Cell Metab ; 14(5): 707-14, 2011 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-22019086

RESUMO

The SNF1 protein kinase complex plays an essential role in regulating gene expression in response to the level of extracellular glucose in budding yeast. SNF1 shares structural and functional similarities with mammalian AMP-activated protein kinase. Both kinases are activated by phosphorylation on a threonine residue within the activation loop segment of the catalytic subunit. Here we show that ADP is the long-sought metabolite that activates SNF1 in response to glucose limitation by protecting the enzyme against dephosphorylation by Glc7, its physiologically relevant protein phosphatase. We also show that the regulatory subunit of SNF1 has two ADP binding sites. The tighter site binds AMP, ADP, and ATP competitively with NADH, whereas the weaker site does not bind NADH, but is responsible for mediating the protective effect of ADP on dephosphorylation. Mutagenesis experiments suggest that the general mechanism by which ADP protects against dephosphorylation is strongly conserved between SNF1 and AMPK.


Assuntos
Difosfato de Adenosina/metabolismo , Ativação Enzimática/genética , Glucose/metabolismo , Proteína Fosfatase 1/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Transdução de Sinais , Difosfato de Adenosina/química , Adenilato Quinase/genética , Adenilato Quinase/metabolismo , Sequência de Aminoácidos , Domínio Catalítico/genética , Sequência Conservada , Regulação Fúngica da Expressão Gênica/fisiologia , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Proteína Fosfatase 1/genética , Proteínas Serina-Treonina Quinases/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato , Treonina/metabolismo
8.
Eukaryot Cell ; 10(12): 1628-36, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22002657

RESUMO

The phosphorylation status of the Snf1 activation loop threonine is determined by changes in the rate of its dephosphorylation, catalyzed by the yeast PP1 phosphatase Glc7 in complex with the Reg1 protein. Previous studies have shown that Reg1 can associate with both Snf1 and Glc7, suggesting substrate binding as a mechanism for Reg1-mediated targeting of Glc7. In this study, the association of Reg1 with the three Snf1 isoforms was measured by two-hybrid analysis and coimmunoprecipitation. We found that Reg1 association with Snf1 occurred almost exclusively with the Gal83 isoform of the Snf1 complex. Nonetheless, Reg1 plays an important role in determining the phosphorylation status of all three Snf1 isoforms. We found that the rate of dephosphorylation for isoforms of Snf1 did not correlate with the amount of associated Reg1 protein. Functional chimeric ß subunits containing residues from Gal83 and Sip2 were used to map the residues needed to promote Reg1 association with the N-terminal 150 residues of Gal83. The Gal83 isoform of Snf1 is the only isoform capable of nuclear localization. A Gal83-Sip2 chimera containing the first 150 residues of Gal83 was able to associate with the Reg1 protein but did not localize to the nucleus. Therefore, nuclear localization is not required for Reg1 association. Taken together, these data indicate that the ability of Reg1 to promote the dephosphorylation of Snf1 is not directly related to the strength of its association with the Snf1 complex.


Assuntos
Proteína Fosfatase 1/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/enzimologia , Proteínas de Fluorescência Verde/metabolismo , Isoenzimas/metabolismo , Sinais de Localização Nuclear , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteína Fosfatase 1/metabolismo , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/química , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Transativadores/metabolismo , Técnicas do Sistema de Duplo-Híbrido
9.
Eukaryot Cell ; 9(1): 173-83, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19897735

RESUMO

Members of the AMP-activated protein kinase family, including the Snf1 kinase of Saccharomyces cerevisiae, are activated under conditions of nutrient stress. AMP-activated protein kinases are heterotrimeric complexes composed of a catalytic alpha subunit and regulatory beta and gamma subunits. In this study, the role of the beta subunits in the regulation of Snf1 activity was examined. Yeasts express three isoforms of the AMP-activated protein kinase consisting of Snf1 (alpha), Snf4 (gamma), and one of three alternative beta subunits, either Sip1, Sip2, or Gal83. The Gal83 isoform of the Snf1 complex is the most abundant and was analyzed in the greatest detail. All three beta subunits contain a conserved domain referred to as the glycogen-binding domain. The deletion of this domain from Gal83 results in a deregulation of the Snf1 kinase, as judged by a constitutive activity independent of glucose availability. In contrast, the deletion of this homologous domain from the Sip1 and Sip2 subunits had little effect on Snf1 kinase regulation. Therefore, the different Snf1 kinase isoforms are regulated through distinct mechanisms, which may contribute to their specialized roles in different stress response pathways. In addition, the beta subunits are subjected to phosphorylation. The responsible kinases were identified as being Snf1 and casein kinase II. The significance of the phosphorylation is unclear since the deletion of the region containing the phosphorylation sites in Gal83 had little effect on the regulation of Snf1 in response to glucose limitation.


Assuntos
Glicogênio/metabolismo , Isoenzimas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Subunidades Proteicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Sequência de Aminoácidos , Animais , Caseína Quinase II/metabolismo , Regulação Fúngica da Expressão Gênica , Glucose/metabolismo , Isoenzimas/genética , Dados de Sequência Molecular , Complexos Multiproteicos/metabolismo , Proteínas Serina-Treonina Quinases/genética , Subunidades Proteicas/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Transdução de Sinais/fisiologia
10.
J Biol Chem ; 283(51): 35889-98, 2008 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-18955495

RESUMO

The Saccharomyces cerevisiae Snf1 kinase plays a critical role in recalibrating cellular metabolism in response to glucose depletion. Hundreds of genes show changes in expression levels when the SNF1 gene is deleted. However, cells can adapt to the absence of a specific gene when grown in long term culture. Here we apply a chemical genetic method to rapidly and selectively inactivate a modified Snf1 kinase using a pyrazolopyrimidine inhibitor. By allowing cells to adjust to a change in carbon source prior to inhibition of the Snf1 kinase activity, we identified a set of genes whose expression increased when Snf1 was inhibited. Prominent in this set are genes that are activated by Gcn4, a transcriptional activator of amino acid biosynthetic genes. Deletion of Snf1 increased Gcn4 protein levels without affecting its mRNA levels. The increased Gcn4 protein levels required the Gcn2 kinase and Gcn20, regulators of GCN4 translation. These data indicate that Snf1 functions upstream of Gcn20 to regulate control of GCN4 translation in S. cerevisiae.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação Fúngica da Expressão Gênica/fisiologia , Biossíntese de Proteínas/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica , Proteínas de Ligação a DNA/genética , Deleção de Genes , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Pirimidinas/farmacologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Triazóis/farmacologia
11.
J Biol Chem ; 283(1): 222-230, 2008 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-17991748

RESUMO

Phosphorylation of the Saccharomyces cerevisiae Snf1 kinase activation loop is determined by the integration of two reaction rates: the rate of phosphorylation by upstream kinases and the rate of dephosphorylation by Glc7. The activities of the Snf1-activating kinases do not appear to be glucose-regulated, since immune complex kinase assays with each of the three Snf1-activating kinases show similar levels of activity when prepared from cells grown in either high or low glucose. In contrast, the dephosphorylation of the Snf1 activation loop was strongly regulated by glucose. When de novo phosphorylation of Snf1 was inhibited, phosphorylation of the Snf1 activation loop was found to be stable in low glucose but rapidly lost upon the addition of glucose. A greater than 10-fold difference in the rates of Snf1 activation loop dephosphorylation was detected. However, the activity of the Glc7-Reg1 phosphatase may not itself be directly regulated by glucose, since the Glc7-Reg1 enzyme was active in low glucose toward another substrate, the transcription factor Mig1. Glucose-mediated regulation of Snf1 activation loop dephosphorylation is controlled by changes in the ability of the Snf1 activation loop to act as a substrate for Glc7.


Assuntos
Proteína Fosfatase 1/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Treonina/metabolismo , Proteínas Quinases Ativadas por AMP , Western Blotting , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática/efeitos dos fármacos , Glucose/farmacologia , Modelos Biológicos , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Fosforilação/efeitos dos fármacos , Ligação Proteica , Proteína Fosfatase 1/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Treonina/genética
12.
J Biol Chem ; 281(36): 26170-80, 2006 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-16847059

RESUMO

The Snf1 kinase and its mammalian orthologue, the AMP-activated protein kinase (AMPK), function as heterotrimers composed of a catalytic alpha-subunit and two non-catalytic subunits, beta and gamma. The beta-subunit is thought to hold the complex together and control subcellular localization whereas the gamma-subunit plays a regulatory role by binding to and blocking the function of an auto-inhibitory domain (AID) present in the alpha-subunit. In addition, catalytic activity requires phosphorylation by a distinct upstream kinase. In yeast, any one of three Snf1-activating kinases, Sak1, Tos3, or Elm1, can fulfill this role. We have previously shown that Sak1 is the only Snf1-activating kinase that forms a stable complex with Snf1. Here we show that the formation of the Sak1.Snf1 complex requires the beta- and gamma-subunits in vivo. However, formation of the Sak1.Snf1 complex is not necessary for glucose-regulated phosphorylation of the Snf1 activation loop. Snf1 kinase purified from cells lacking the beta-subunits do not contain any gamma-subunit, indicating that the Snf1 kinase does not form a stable alphagamma dimer in vivo. In vitro kinase assays using purified full-length and truncated Snf1 proteins demonstrate that the kinase domain, which lacks the AID, is significantly more active than the full-length Snf1 protein. Addition of purified beta- and gamma-subunits could stimulate the kinase activity of the full-length alpha-subunit but only when all three subunits were present, suggesting an interdependence of all three subunits for assembly of a functional complex.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Quaternária de Proteína , Subunidades Proteicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática , Glucose/metabolismo , Complexos Multiproteicos , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Subunidades Proteicas/química , Subunidades Proteicas/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
13.
Eukaryot Cell ; 5(4): 620-7, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16607009

RESUMO

In Saccharomyces cerevisiae, the Snf1 kinase can be activated by any one of three upstream kinases, Sak1, Tos3, or Elm1. All three Snf1-activating kinases contain serine/threonine kinase domains near their N termini and large C-terminal domains with little sequence conservation and previously unknown function. Deletion of the C-terminal domains of Sak1 and Tos3 greatly reduces their ability to activate the Snf1 pathway. In contrast, deletion of the Elm1 C-terminal domain has no effect on Snf1 signaling but abrogates the ability of Elm1 to participate in the morphogenetic-checkpoint signaling pathway. Thus, the C-terminal domains of Sak1, Tos3, and Elm1 help to determine pathway specificity. Additional deletion mutants of the Sak1 kinase revealed that the N terminus of the protein is essential for Snf1 signaling. The deletion of 43 amino acids from within the N terminus of Sak1 (residues 87 to 129) completely blocks Snf1 signaling and activation loop phosphorylation in vivo. The Sak1 kinase domain (lacking both N-terminal and C-terminal domains) is catalytically active and specific in vitro but is unable to promote Snf1 signaling in vivo when expressed at normal levels. Our studies indicate that the kinase domains of the Snf1-activating kinases are not sufficient by themselves for their proper function and that the nonconserved N-terminal and C-terminal domains are critical for the biological activities of these kinases.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , Dados de Sequência Molecular , Fosforilação , Proteínas Quinases/química , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência
14.
Biochem J ; 393(Pt 3): 797-805, 2006 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-16201971

RESUMO

Members of the Snf1/AMPK family of protein kinases are activated by distinct upstream kinases that phosphorylate a conserved threonine residue in the Snf1/AMPK activation loop. Recently, the identities of the Snf1- and AMPK-activating kinases have been determined. Here we describe the purification and characterization of the three Snf1-activating kinases of Saccharomyces cerevisiae. The identities of proteins associated with the Snf1-activating kinases were determined by peptide mass fingerprinting. These kinases, Sak1, Tos3 and Elm2 do not appear to require the presence of additional subunits for activity. Sak1 and Snf1 co-purify and co-elute in size exclusion chromatography, demonstrating that these two proteins form a stable complex. The Snf1-activating kinases phosphorylate the activation loop threonine of Snf1 in vitro with great specificity and are able to do so in the absence of beta and gamma subunits of the Snf1 heterotrimer. Finally, we showed that the Snf1 kinase domain isolated from bacteria as a GST fusion protein can be activated in vitro and shows substrate specificity in the absence of its beta and gamma subunits.


Assuntos
Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Caseína Quinase II/metabolismo , Catálise , Ativação Enzimática , Glucose/farmacologia , Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/química , Estrutura Terciária de Proteína , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Transdução de Sinais/efeitos dos fármacos , Especificidade por Substrato
15.
Nature ; 438(7068): 679-84, 2005 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-16319894

RESUMO

Protein phosphorylation is estimated to affect 30% of the proteome and is a major regulatory mechanism that controls many basic cellular processes. Until recently, our biochemical understanding of protein phosphorylation on a global scale has been extremely limited; only one half of the yeast kinases have known in vivo substrates and the phosphorylating kinase is known for less than 160 phosphoproteins. Here we describe, with the use of proteome chip technology, the in vitro substrates recognized by most yeast protein kinases: we identified over 4,000 phosphorylation events involving 1,325 different proteins. These substrates represent a broad spectrum of different biochemical functions and cellular roles. Distinct sets of substrates were recognized by each protein kinase, including closely related kinases of the protein kinase A family and four cyclin-dependent kinases that vary only in their cyclin subunits. Although many substrates reside in the same cellular compartment or belong to the same functional category as their phosphorylating kinase, many others do not, indicating possible new roles for several kinases. Furthermore, integration of the phosphorylation results with protein-protein interaction and transcription factor binding data revealed novel regulatory modules. Our phosphorylation results have been assembled into a first-generation phosphorylation map for yeast. Because many yeast proteins and pathways are conserved, these results will provide insights into the mechanisms and roles of protein phosphorylation in many eukaryotes.


Assuntos
Proteínas Fúngicas/metabolismo , Análise Serial de Proteínas , Proteínas Quinases/metabolismo , Proteoma/metabolismo , Leveduras/metabolismo , Células Eucarióticas/metabolismo , Proteínas Fúngicas/química , Fosforilação , Proteínas Quinases/classificação , Transporte Proteico , Proteômica , Reprodutibilidade dos Testes , Especificidade por Substrato , Leveduras/enzimologia
16.
Curr Genet ; 47(6): 335-44, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15824893

RESUMO

Three upstream kinases, Pak1, Tos3 and Elm1, are able to activate the Snf1 kinase. Since the Snf1 kinase itself assembles into three complexes that differ in their beta subunit identity, the possibility exists that each upstream kinase might be dedicated to a single isoform of the Snf1 kinase. To test this dedicated activator hypothesis, we generated a series of yeast strains that lacked different combinations of upstream kinases and beta subunits. Cells expressing only one of the three upstream kinases exhibited distinct abilities to activate Snf1, depending on the beta subunit present in the Snf1 kinase complex and the stress imposed on the cells. Pak1 and Gal83 were the most promiscuous. Pak1 was able to activate all three isoforms of the Snf1 kinase under all stress conditions tested. The Gal83 isoform of Snf1 was able to be activated by any of the three upstream kinases under aerobic growth conditions but showed a preference for Pak1 during growth on raffinose. Our results indicate that the three Snf1-activating kinases are not dedicated to specific isoforms of the Snf1 kinase. Instead, the different isoforms of the Snf1 kinase display stress-dependent preferences for the Pak1, Tos3 and Elm1 kinases.


Assuntos
Proteínas Quinases/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Ativação Enzimática , Estado Nutricional , Isoformas de Proteínas , Proteínas Quinases/biossíntese , Proteínas Serina-Treonina Quinases/biossíntese , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/biossíntese , Quinases Ativadas por p21
17.
Curr Biol ; 13(15): 1299-305, 2003 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-12906789

RESUMO

BACKGROUND: The yeast SNF1 protein kinase and the mammalian AMP-activated protein kinase are highly conserved heterotrimeric complexes that are "metabolic master switches" involved in the switch from fermentative/anaerobic to oxidative metabolism. They are activated by cellular stresses that deplete cellular ATP, and SNF1 is essential in the response to glucose starvation. In both cases, activation requires phosphorylation at a conserved threonine residue within the activation loop of the kinase domain, but identifying the upstream kinase(s) responsible for this has been a challenging, unsolved problem. RESULTS: Using a library of strains that express 119 yeast protein kinases as GST fusions, we identified Elm1p as the sole kinase that could activate the kinase domain of AMP-activated protein kinase in vitro. Elm1p also activated the purified SNF1 complex, and this correlated with phosphorylation of Thr210 in the activation loop. Removal of the C-terminal domain increased the Elm1p kinase activity, indicating that it is auto-inhibitory. Expression of activated, truncated Elm1p from its own promoter gave a constitutive pseudohyphal growth phenotype that was rescued by deletion of SNF1, showing that Snf1p was acting downstream of Elm1p. Deletion of ELM1 does not give an snf- phenotype. However, Elm1p is closely related to Pak1p and Tos3p, and a pak1Delta tos3Delta elm1Delta triple mutant had an snf1- phenotype, i.e., it would not grow on raffinose and did not display hyperphosphorylation of the SNF1 target, Mig1p, in response to glucose starvation. CONCLUSIONS: Elm1p, Pak1p, and Tos3p are upstream kinases for the SNF1 complex that have partially redundant functions.


Assuntos
Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Sequência de Aminoácidos , Western Blotting , Técnicas In Vitro , Espectrometria de Massas , Microscopia de Interferência , Dados de Sequência Molecular , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae
18.
Mol Cell Biol ; 23(11): 3909-17, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12748292

RESUMO

Members of the Snf1/AMP-activated protein kinase family are activated under conditions of nutrient stress by a distinct upstream kinase. Here we present evidence that the yeast Pak1 kinase functions as a Snf1-activating kinase. Pak1 associates with the Snf1 kinase in vivo, and the association is greatly enhanced under glucose-limiting conditions when Snf1 is active. Snf1 kinase complexes isolated from pak1Delta mutant strains show reduced specific activity in vitro, and affinity-purified Pak1 kinase is able to activate the Snf1-dependent phosphorylation of Mig1 in vitro. Purified Pak1 kinase promotes the phosphorylation of the Snf1 polypeptide on threonine 210 within the activation loop in vitro, and an increased dosage of the PAK1 gene causes increased Snf1 threonine 210 phosphorylation in vivo. Deletion of the PAK1 gene does not produce a Snf phenotype, suggesting that one or more additional protein kinases is able to activate Snf1 in vivo. However, deletion of the PAK1 gene suppresses many of the phenotypes associated with the deletion of the REG1 gene, providing genetic evidence that Pak1 activates Snf1 in vivo. The closest mammalian homologue of yeast Pak1 kinase, calcium-calmodulin-dependent protein kinase kinase beta, may play a similar role in mammalian nutrient stress signaling.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ativação Enzimática , Glucose/metabolismo , Substâncias Macromoleculares , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Proteína Fosfatase 1 , Proteínas Serina-Treonina Quinases/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Treonina/metabolismo , Quinases Ativadas por p21
19.
Eukaryot Cell ; 2(2): 265-73, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12684376

RESUMO

Activation of the Snf1 kinase requires at least two events, phosphorylation of the activation loop on threonine 210 and an Snf4-dependent process that is not completely defined. Snf4 directly interacts with a region of the regulatory domain of Snf1 that may otherwise act as an autoinhibitory domain. In order to gain insight into the regulation of Snf1 kinase by Snf4, deletions in the regulatory domain of the catalytic subunit were engineered and tested for their effect on Snf1 function in the absence of Snf4. Deletion of residues 381 to 488 from the Snf1 protein resulted in a kinase that was activated by glucose limitation even in the absence of the Snf4 protein. A larger deletion (amino acids 381 to 608) encompassing virtually the entire regulatory domain resulted in complete inactivation of the Snf1 kinase even in the presence of Snf4. A genetic screen for amino acid substitutions that conferred an Snf4-independent phenotype identified four point mutations in the Snf1 catalytic domain. One very conservative mutation, leucine 183 to isoleucine, conferred nearly wild-type levels of Snf1 kinase function in the absence of the Snf4 protein. Purified Snf1 kinase was inactive when isolated from snf4Delta cells, whereas the Snf1-L183I kinase exhibited significant activity in the absence of Snf4. Our data support the idea that Snf1 kinase activity is constrained in cis by an autoinhibitory domain and that the Snf4-mediated activation of Snf1 can be bypassed by subtle conformational changes in the catalytic domain of the Snf1 kinase.


Assuntos
Proteínas de Transporte , Mutação/genética , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Proteínas Quinases Ativadas por AMP , Sequência de Aminoácidos/genética , Domínio Catalítico/genética , Células Cultivadas , Glucose/deficiência , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Mutação Puntual/genética , Conformação Proteica , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/metabolismo
20.
J Biol Chem ; 277(52): 50403-8, 2002 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-12393914

RESUMO

The Snf1 kinase complex of Saccharomyces cerevisiae contains one of three possible beta subunits encoded by either SIP1, SIP2, or GAL83. Snf1 kinase complexes were purified from cells expressing only one of the three beta subunits using a tandem affinity purification tag on the C terminus of the Snf1 protein. The purified kinase complexes were enzymatically active as judged by their ability to phosphorylate a recombinant protein containing the Snf1-responsive domain of the Mig1 protein. The Snf1 kinase complexes containing Gal83 or Sip2 as the beta subunit showed comparable and high levels of activity, whereas the Sip1-containing enzyme was significantly less active. Examination of the protein composition of the purified Snf1 enzyme complexes indicated that the Sip1 protein was present in substoichiometric levels. Increased gene dosage of SIP1 rescued the ethanol growth defect observed in cells expressing Sip1 as their only beta subunit and increased the in vitro activity of Snf1 kinase purified from these cells. Our studies indicate that the reduced activity of Snf1-Snf4-Sip1 kinase is due to low level of Sip1 accumulation rather than a limited ability of the Sip1 form of the enzyme to direct phosphorylation of specific substrates.


Assuntos
Proteínas Serina-Treonina Quinases/química , Subunidades Proteicas/química , Saccharomyces cerevisiae/enzimologia , Genótipo , Cinética , Fosforilação , Proteínas Serina-Treonina Quinases/isolamento & purificação , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...