Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 108(28): 11464-9, 2011 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-21709252

RESUMO

The intracellular localization and shape of the nucleus plays a central role in cellular and developmental processes. In fibroblasts, nuclear movement and shape are controlled by a specific perinuclear actin network made of contractile actin filament bundles called transmembrane actin-associated nuclear (TAN) lines that form a structure called the actin cap. The identification of regulatory proteins associated with this specific actin cytoskeletal dynamic is a priority for understanding actin-based changes in nuclear shape and position in normal and pathological situations. Here, we first identify a unique family of actin regulators, the refilin proteins (RefilinA and RefilinB), that stabilize specifically perinuclear actin filament bundles. We next identify the actin-binding filamin A (FLNA) protein as the downstream effector of refilins. Refilins act as molecular switches to convert FLNA from an actin branching protein into one that bundles. In NIH 3T3 fibroblasts, the RefilinB/FLNA complex organizes the perinuclear actin filament bundles forming the actin cap. Finally, we demonstrate that in epithelial normal murine mammary gland (NmuMG) cells, the RefilinB/FLNA complex controls formation of a new perinuclear actin network that accompanies nuclear shape changes during the epithelial-mesenchymal transition (EMT). Our studies open perspectives for further functional analyses of this unique actin-based network and shed light on FLNA function during development and in human syndromes associated with FLNA mutations.


Assuntos
Actinas/metabolismo , Proteínas de Transporte/metabolismo , Núcleo Celular/metabolismo , Proteínas Contráteis/metabolismo , Proteínas dos Microfilamentos/metabolismo , Sequência de Aminoácidos , Animais , Astrocitoma/metabolismo , Astrocitoma/ultraestrutura , Sequência de Bases , Proteínas de Transporte/química , Proteínas de Transporte/genética , Linhagem Celular , Linhagem Celular Tumoral , Núcleo Celular/ultraestrutura , Dimerização , Transição Epitelial-Mesenquimal , Feminino , Filaminas , Humanos , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/metabolismo , Camundongos , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/genética , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Complexos Multiproteicos , Células NIH 3T3 , Domínios e Motivos de Interação entre Proteínas , RNA Interferente Pequeno/genética , Deleção de Sequência
2.
Funct Plant Biol ; 38(1): 63-74, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32480863

RESUMO

The role of anatomical traits in carbohydrate accumulation was investigated in fruit of Actinidia deliciosa (A. Chev.) C. F. Liang et A. R. Ferguson (kiwifruit) var. deliciosa by comparing high and low dry matter (DM) accumulating genotypes. DM was shown previously to be correlated with starch concentration in these fruit. Volume proportions of the three fruit tissues (outer pericarp, inner pericarp and central core) did not vary significantly between genotypes or contribute to variation in total fruit DM. The outer pericarp of the kiwifruit berry contains both small and large cells: the size of these cells was not correlated with final fruit size. In high DM genotypes, the relative volume of outer pericarp tissue occupied by small cells (50%) was significantly greater than that in low DM genotypes (43%). Small cells have a higher starch concentration than large cells: the larger proportion of small cells in the outer pericarp of fruit from high DM genotypes accounted for approximately +25% of the measured differences in fruit starch concentration between high and low DM genotypes. We conclude that, although anatomical traits contribute to variation in fruit starch concentration between kiwifruit genotypes, differences in starch content per small cell are important and worthy of further investigation. This is the first time anatomical investigations have been used to examine differences in fruit carbohydrate accumulation in kiwifruit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...