Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38610550

RESUMO

Winter cover crops are planted during the fall to reduce nitrogen losses and soil erosion and improve soil health. Accurate estimations of winter cover crop performance and biophysical traits including biomass and fractional vegetative groundcover support accurate assessment of environmental benefits. We examined the comparability of measurements between ground-based and spaceborne sensors as well as between processing levels (e.g., surface vs. top-of-atmosphere reflectance) in estimating cover crop biophysical traits. This research examined the relationships between SPOT 5, Landsat 7, and WorldView-2 same-day paired satellite imagery and handheld multispectral proximal sensors on two days during the 2012-2013 winter cover crop season. We compared two processing levels from three satellites with spatially aggregated proximal data for red and green spectral bands as well as the normalized difference vegetation index (NDVI). We then compared NDVI estimated fractional green cover to in-situ photographs, and we derived cover crop biomass estimates from NDVI using existing calibration equations. We used slope and intercept contrasts to test whether estimates of biomass and fractional green cover differed statistically between sensors and processing levels. Compared to top-of-atmosphere imagery, surface reflectance imagery were more closely correlated with proximal sensors, with intercepts closer to zero, regression slopes nearer to the 1:1 line, and less variance between measured values. Additionally, surface reflectance NDVI derived from satellites showed strong agreement with passive handheld multispectral proximal sensor-sensor estimated fractional green cover and biomass (adj. R2 = 0.96 and 0.95; RMSE = 4.76% and 259 kg ha-1, respectively). Although active handheld multispectral proximal sensor-sensor derived fractional green cover and biomass estimates showed high accuracies (R2 = 0.96 and 0.96, respectively), they also demonstrated large intercept offsets (-25.5 and 4.51, respectively). Our results suggest that many passive multispectral remote sensing platforms may be used interchangeably to assess cover crop biophysical traits whereas SPOT 5 required an adjustment in NDVI intercept. Active sensors may require separate calibrations or intercept correction prior to combination with passive sensor data. Although surface reflectance products were highly correlated with proximal sensors, the standardized cloud mask failed to completely capture cloud shadows in Landsat 7, which dampened the signal of NIR and red bands in shadowed pixels.


Assuntos
Atmosfera , Tecnologia de Sensoriamento Remoto , Estações do Ano , Biomassa , Biofísica , Nonoxinol
2.
J Vis Exp ; (140)2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30394378

RESUMO

Landscape topography is a critical factor affecting soil formation and plays an important role in determining soil properties on the earth surface, as it regulates the gravity-driven soil movement induced by runoff and tillage activities. The recent application of Light Detection and Ranging (LiDAR) data holds promise for generating high spatial resolution topographic metrics that can be used to investigate soil property variability. In this study, fifteen topographic metrics derived from LiDAR data were used to investigate topographic impacts on redistribution of soil and spatial distribution of soil organic carbon (SOC). Specifically, we explored the use of topographic principal components (TPCs) for characterizing topography metrics and stepwise principal component regression (SPCR) to develop topography-based soil erosion and SOC models at site and watershed scales. Performance of SPCR models was evaluated against stepwise ordinary least square regression (SOLSR) models. Results showed that SPCR models outperformed SOLSR models in predicting soil redistribution rates and SOC density at different spatial scales. Use of TPCs removes potential collinearity between individual input variables, and dimensionality reduction by principal component analysis (PCA) diminishes the risk of overfitting the prediction models. This study proposes a new approach for modeling soil redistribution across various spatial scales. For one application, access to private lands is often limited, and the need to extrapolate findings from representative study sites to larger settings that include private lands can be important.


Assuntos
Carbono/análise , Monitoramento Ambiental/métodos , Modelos Teóricos , Análise de Componente Principal , Solo/química
3.
Hydrol Process ; 32(2): 305-313, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29681686

RESUMO

Globally, hydrologic modifications such as ditching and subsurface drainage have significantly reduced wetland water storage capacity (i.e., volume of surface water a wetland can retain) and consequent wetland functions. While wetland area has been well documented across many landscapes and used to guide restoration efforts, few studies have directly quantified the associated wetland storage capacity. Here, we present a novel raster-based approach to quantify both contemporary and potential (i.e., restorable) storage capacities of individual depressional basins across landscapes. We demonstrate the utility of this method by applying it to the Delmarva Peninsula, a region punctuated by both depressional wetlands and drainage ditches. Across the entire peninsula, we estimated that restoration (i.e., plugging ditches) could increase storage capacity by 80%. Focusing on an individual watershed, we found that over 59% of restorable storage capacity occurs within 20 m of the drainage network, and that 93% occurs within 1 m elevation of the drainage network. Our demonstration highlights widespread ditching in this landscape, spatial patterns of both contemporary and potential storage capacities, and clear opportunities for hydrologic restoration. In Delmarva and more broadly, our novel approach can inform targeted landscape-scale conservation and restoration efforts to optimize hydrologically mediated wetland functions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...