Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiology (Reading) ; 167(2)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33400641

RESUMO

Bacterial biofilms are composed of aggregates of cells encased within a matrix of extracellular polymeric substances (EPS). One key EPS component is extracellular DNA (eDNA), which acts as a 'glue', facilitating cell-cell and cell-substratum interactions. We have previously demonstrated that eDNA is produced in Pseudomonas aeruginosa biofilms via explosive cell lysis. This phenomenon involves a subset of the bacterial population explosively lysing, due to peptidoglycan degradation by the endolysin Lys. Here we demonstrate that in P. aeruginosa three holins, AlpB, CidA and Hol, are involved in Lys-mediated eDNA release within both submerged (hydrated) and interstitial (actively expanding) biofilms, albeit to different extents, depending upon the type of biofilm and the stage of biofilm development. We also demonstrate that eDNA release events determine the sites at which cells begin to cluster to initiate microcolony formation during the early stages of submerged biofilm development. Furthermore, our results show that sustained release of eDNA is required for cell cluster consolidation and subsequent microcolony development in submerged biofilms. Overall, this study adds to our understanding of how eDNA release is controlled temporally and spatially within P. aeruginosa biofilms.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , DNA Bacteriano/metabolismo , Pseudomonas aeruginosa/fisiologia , Proteínas de Bactérias/genética , Bacteriólise , Endopeptidases/genética , Endopeptidases/metabolismo , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Mutação , Pseudomonas aeruginosa/metabolismo
2.
Microbiology (Reading) ; 166(7): 669-678, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32478653

RESUMO

Twitching motility-mediated biofilm expansion occurs via coordinated, multi-cellular collective behaviour to allow bacteria to actively expand across surfaces. Type-IV pili (T4P) are cell-associated virulence factors which mediate twitching motility via rounds of extension, surface attachment and retraction. The Chp chemosensory system is thought to respond to environmental signals to regulate the biogenesis, assembly and twitching motility function of T4P. In other well characterised chemosensory systems, methyl-accepting chemotaxis proteins (MCPs) feed environmental signals through a CheW adapter protein to the histidine kinase CheA to modulate motility. The Pseudomonas aeruginosa Chp system has an MCP PilJ and two CheW adapter proteins, PilI and ChpC, that likely interact with the histidine kinase ChpA to feed environmental signals into the system. In the current study we show that ChpC is involved in the response to host-derived signals serum albumin, mucin and oligopeptides. We demonstrate that these signals stimulate an increase in twitching motility, as well as in levels of 3'-5'-cyclic adenosine monophosphate (cAMP) and surface-assembled T4P. Interestingly, our data shows that changes in cAMP and surface piliation levels are independent of ChpC but that the twitching motility response to these environmental signals requires ChpC. Furthermore, we show that protease activity is required for the twitching motility response of P. aeruginosa to environmental signals. Based upon our data we propose a model whereby ChpC feeds these environmental signals into the Chp system, potentially via PilJ or another MCP, to control twitching motility. PilJ and PilI then modulate T4P surface levels to allow the cell to continue to undergo twitching motility. Our study is the first to link environmental signals to the Chp chemosensory system and refines our understanding of how this system controls twitching motility-mediated biofilm expansion in P. aeruginosa.


Assuntos
Biofilmes/crescimento & desenvolvimento , AMP Cíclico/metabolismo , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Proteínas de Bactérias/metabolismo , DNA Bacteriano , Interações Hospedeiro-Patógeno , Movimento/efeitos dos fármacos , Mucinas/farmacologia , Oligopeptídeos/farmacologia , Infecções por Pseudomonas/microbiologia , Deleção de Sequência , Albumina Sérica/farmacologia , Transdução de Sinais , Fatores de Virulência/metabolismo
3.
Proc Natl Acad Sci U S A ; 114(45): 12051-12056, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29078392

RESUMO

Unlike their descendants, mitochondria and plastids, bacteria do not have dedicated protein import systems. However, paradoxically, import of protein bacteriocins, the mechanisms of which are poorly understood, underpins competition among pathogenic and commensal bacteria alike. Here, using X-ray crystallography, isothermal titration calorimetry, confocal fluorescence microscopy, and in vivo photoactivatable cross-linking of stalled translocation intermediates, we demonstrate how the iron transporter FpvAI in the opportunistic pathogen Pseudomonas aeruginosa is hijacked to translocate the bacteriocin pyocin S2 (pyoS2) across the outer membrane (OM). FpvAI is a TonB-dependent transporter (TBDT) that actively imports the small siderophore ferripyoverdine (Fe-Pvd) by coupling to the proton motive force (PMF) via the inner membrane (IM) protein TonB1. The crystal structure of the N-terminal domain of pyoS2 (pyoS2NTD) bound to FpvAI (Kd = 240 pM) reveals that the pyocin mimics Fe-Pvd, inducing the same conformational changes in the receptor. Mimicry leads to fluorescently labeled pyoS2NTD being imported into FpvAI-expressing P. aeruginosa cells by a process analogous to that used by bona fide TBDT ligands. PyoS2NTD induces unfolding by TonB1 of a force-labile portion of the plug domain that normally occludes the central channel of FpvAI. The pyocin is then dragged through this narrow channel following delivery of its own TonB1-binding epitope to the periplasm. Hence, energized nutrient transporters in bacteria also serve as rudimentary protein import systems, which, in the case of FpvAI, results in a protein antibiotic 60-fold bigger than the transporter's natural substrate being translocated across the OM.


Assuntos
Antibacterianos/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Transporte Biológico/fisiologia , Ferro/metabolismo , Bacteriocinas/metabolismo , Cristalografia por Raios X/métodos , Proteínas de Membrana Transportadoras/metabolismo , Periplasma/metabolismo , Transporte Proteico/fisiologia , Pseudomonas aeruginosa/metabolismo , Sideróforos/metabolismo
4.
Sci Rep ; 6: 30201, 2016 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-27444885

RESUMO

Protein antibiotics, known as bacteriocins, are widely produced by bacteria for intraspecies competition. The potency and targeted action of bacteriocins suggests that they could be developed into clinically useful antibiotics against highly drug resistant Gram-negative pathogens for which there are few therapeutic options. Here we show that Pseudomonas aeruginosa specific bacteriocins, known as pyocins, show strong efficacy in a murine model of P. aeruginosa lung infection, with the concentration of pyocin S5 required to afford protection from a lethal infection at least 100-fold lower than the most commonly used inhaled antibiotic tobramycin. Additionally, pyocins are stable in the lung, poorly immunogenic at high concentrations and efficacy is maintained in the presence of pyocin specific antibodies after repeated pyocin administration. Bacteriocin encoding genes are frequently found in microbial genomes and could therefore offer a ready supply of highly targeted and potent antibiotics active against problematic Gram-negative pathogens.


Assuntos
Antibacterianos/farmacologia , Pneumopatias/tratamento farmacológico , Pulmão/microbiologia , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Animais , Bacteriocinas/farmacologia , Modelos Animais de Doenças , Feminino , Pneumopatias/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Pseudomonas/microbiologia , Piocinas/farmacologia , Especificidade da Espécie , Tobramicina/farmacologia
5.
Biochem J ; 473(18): 2799-812, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27402794

RESUMO

Protein antibiotics (bacteriocins) are a large and diverse family of multidomain toxins that kill specific Gram-negative bacteria during intraspecies competition for resources. Our understanding of the mechanism of import of such potent toxins has increased significantly in recent years, especially with the reporting of several structures of bacteriocin domains. Less well understood is the structural biochemistry of intact bacteriocins and how these compare across bacterial species. Here, we focus on endonuclease (DNase) bacteriocins that target the genomes of Escherichia coli and Pseudomonas aeruginosa, known as E-type colicins and S-type pyocins, respectively, bound to their specific immunity (Im) proteins. First, we report the 3.2 Šstructure of the DNase colicin ColE9 in complex with its ultra-high affinity Im protein, Im9. In contrast with Im3, which when bound to the ribonuclease domain of the homologous colicin ColE3 makes contact with the translocation (T) domain of the toxin, we find that Im9 makes no such contact and only interactions with the ColE9 cytotoxic domain are observed. Second, we report small-angle X-ray scattering data for two S-type DNase pyocins, S2 and AP41, into which are fitted recently determined X-ray structures for isolated domains. We find that DNase pyocins and colicins are both highly elongated molecules, even though the order of their constituent domains differs. We discuss the implications of these architectural similarities and differences in the context of the translocation mechanism of protein antibiotics through the cell envelope of Gram-negative bacteria.


Assuntos
Antibacterianos/química , Endonucleases/química , Sequência de Aminoácidos , Biofísica , Conformação Proteica , Homologia de Sequência de Aminoácidos
6.
Biochem J ; 473(15): 2345-58, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27252387

RESUMO

Increasing rates of antibiotic resistance among Gram-negative pathogens such as Pseudomonas aeruginosa means alternative approaches to antibiotic development are urgently required. Pyocins, produced by P. aeruginosa for intraspecies competition, are highly potent protein antibiotics known to actively translocate across the outer membrane of P. aeruginosa. Understanding and exploiting the mechanisms by which pyocins target, penetrate and kill P. aeruginosa is a promising approach to antibiotic development. In this work we show the therapeutic potential of a newly identified tRNase pyocin, pyocin SD2, by demonstrating its activity in vivo in a murine model of P. aeruginosa lung infection. In addition, we propose a mechanism of cell targeting and translocation for pyocin SD2 across the P. aeruginosa outer membrane. Pyocin SD2 is concentrated at the cell surface, via binding to the common polysaccharide antigen (CPA) of P. aeruginosa lipopolysaccharide (LPS), from where it can efficiently locate its outer membrane receptor FpvAI. This strategy of utilizing both the CPA and a protein receptor for cell targeting is common among pyocins as we show that pyocins S2, S5 and SD3 also bind to the CPA. Additional data indicate a key role for an unstructured N-terminal region of pyocin SD2 in the subsequent translocation of the pyocin into the cell. These results greatly improve our understanding of how pyocins target and translocate across the outer membrane of P. aeruginosa. This knowledge could be useful for the development of novel anti-pseudomonal therapeutics and will also support the development of pyocin SD2 as a therapeutic in its own right.


Assuntos
Antibacterianos/isolamento & purificação , Pseudomonas aeruginosa/química , Piocinas/isolamento & purificação , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Dicroísmo Circular , Clonagem Molecular , Pneumopatias/tratamento farmacológico , Camundongos , Piocinas/química , Piocinas/farmacologia , Espalhamento a Baixo Ângulo , Espectrofotometria Ultravioleta , Difração de Raios X
7.
Mol Microbiol ; 93(2): 234-46, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24865810

RESUMO

The colicin-like bacteriocins are potent protein antibiotics that have evolved to efficiently cross the outer membrane of Gram-negative bacteria by parasitizing nutrient uptake systems. We have structurally characterized the colicin M-like bacteriocin, pectocin M2, which is active against strains of Pectobacterium spp. This unusual bacteriocin lacks the intrinsically unstructured translocation domain that usually mediates translocation of these bacteriocins across the outer membrane, containing only a single globular ferredoxin domain connected to its cytotoxic domain by a flexible α-helix, which allows it to adopt two distinct conformations in solution. The ferredoxin domain of pectocin M2 is homologous to plant ferredoxins and allows pectocin M2 to parasitize a system utilized by Pectobacterium to obtain iron during infection of plants. Furthermore, we identify a novel ferredoxin-containing bacteriocin pectocin P, which possesses a cytotoxic domain homologous to lysozyme, illustrating that the ferredoxin domain acts as a generic delivery module for cytotoxic domains in Pectobacterium.


Assuntos
Bacteriocinas/química , Pectobacterium/química , Transporte Proteico , Sequência de Aminoácidos , Bacteriocinas/metabolismo , Colicinas/química , Cristalização , Cristalografia por Raios X , Ferredoxinas/química , Ferro/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Muramidase/química , Conformação Proteica , Estrutura Terciária de Proteína
8.
PLoS Pathog ; 10(2): e1003898, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24516380

RESUMO

Lectin-like bacteriocins consist of tandem monocot mannose-binding domains and display a genus-specific killing activity. Here we show that pyocin L1, a novel member of this family from Pseudomonas aeruginosa, targets susceptible strains of this species through recognition of the common polysaccharide antigen (CPA) of P. aeruginosa lipopolysaccharide that is predominantly a homopolymer of D-rhamnose. Structural and biophysical analyses show that recognition of CPA occurs through the C-terminal carbohydrate-binding domain of pyocin L1 and that this interaction is a prerequisite for bactericidal activity. Further to this, we show that the previously described lectin-like bacteriocin putidacin L1 shows a similar carbohydrate-binding specificity, indicating that oligosaccharides containing D-rhamnose and not D-mannose, as was previously thought, are the physiologically relevant ligands for this group of bacteriocins. The widespread inclusion of d-rhamnose in the lipopolysaccharide of members of the genus Pseudomonas explains the unusual genus-specific activity of the lectin-like bacteriocins.


Assuntos
Bacteriocinas/metabolismo , Lipopolissacarídeos/metabolismo , Pseudomonas aeruginosa/metabolismo , Ramnose/metabolismo , Sequência de Aminoácidos , Bacteriocinas/química , Immunoblotting , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Reação em Cadeia da Polimerase , Estrutura Quaternária de Proteína , Pseudomonas aeruginosa/química , Ramnose/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...