Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 2170, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31092826

RESUMO

During the Last Glacial Maximum (LGM; ~20,000 years ago), the global ocean sequestered a large amount of carbon lost from the atmosphere and terrestrial biosphere. Suppressed CO2 outgassing from the Southern Ocean is the prevailing explanation for this carbon sequestration. By contrast, the North Atlantic Ocean-a major conduit for atmospheric CO2 transport to the ocean interior via the overturning circulation-has received much less attention. Here we demonstrate that North Atlantic carbon pump efficiency during the LGM was almost doubled relative to the Holocene. This is based on a novel proxy approach to estimate air-sea CO2 exchange signals using combined carbonate ion and nutrient reconstructions for multiple sediment cores from the North Atlantic. Our data indicate that in tandem with Southern Ocean processes, enhanced North Atlantic CO2 absorption contributed to lowering ice-age atmospheric CO2.

2.
Nat Commun ; 8: 16010, 2017 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-28703126

RESUMO

While the ocean's large-scale overturning circulation is thought to have been significantly different under the climatic conditions of the Last Glacial Maximum (LGM), the exact nature of the glacial circulation and its implications for global carbon cycling continue to be debated. Here we use a global array of ocean-atmosphere radiocarbon disequilibrium estimates to demonstrate a ∼689±53 14C-yr increase in the average residence time of carbon in the deep ocean at the LGM. A predominantly southern-sourced abyssal overturning limb that was more isolated from its shallower northern counterparts is interpreted to have extended from the Southern Ocean, producing a widespread radiocarbon age maximum at mid-depths and depriving the deep ocean of a fast escape route for accumulating respired carbon. While the exact magnitude of the resulting carbon cycle impacts remains to be confirmed, the radiocarbon data suggest an increase in the efficiency of the biological carbon pump that could have accounted for as much as half of the glacial-interglacial CO2 change.

3.
Science ; 337(6095): 704-9, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-22879512

RESUMO

Earth's climate underwent a fundamental change between 1250 and 700 thousand years ago, the mid-Pleistocene transition (MPT), when the dominant periodicity of climate cycles changed from 41 thousand to 100 thousand years in the absence of substantial change in orbital forcing. Over this time, an increase occurred in the amplitude of change of deep-ocean foraminiferal oxygen isotopic ratios, traditionally interpreted as defining the main rhythm of ice ages although containing large effects of changes in deep-ocean temperature. We have separated the effects of decreasing temperature and increasing global ice volume on oxygen isotope ratios. Our results suggest that the MPT was initiated by an abrupt increase in Antarctic ice volume 900 thousand years ago. We see no evidence of a pattern of gradual cooling, but near-freezing temperatures occur at every glacial maximum.

4.
Philos Trans A Math Phys Eng Sci ; 363(1826): 81-99, 2005 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-15598625

RESUMO

The SW Indian Ocean contains at least four layers of water masses with different sources: deep Antarctic (Lower Circumpolar Deep Water) flow to the north, midwater North Indian Deep Water flow to the south and Upper Circumpolar Deep Water to the north, meridional convergence of intermediate waters at 500-1500 m, and the shallow South Equatorial Current flowing west. Sedimentation rates in the area are rather low, being less than 1 cm ka(-1) on Madagascar Ridge, but up to 4 cm ka(-1) at Amirante Passage. Bottom flow through the Madagascar-Mascarene Basin into Amirante Passage varies slightly on glacial-interglacial time-scales, with faster flow in the warm periods of the last interglacial and minima in cold periods. Far more important are the particularly high flow rates, inferred from silt grain size, which occur at warm-to-cold transitions rather than extrema. This suggests the cause is changing density gradient driving a transiently fast flow. Corroboration is found in the glacial-interglacial range of benthic delta18O which is ca. 2 per thousand, suggesting water close to freezing and at least 1.2 more saline and thus more dense glacial bottom waters than present. Significant density steps are inferred in isotope stage 6, the 5e-5d, and 5a-4 transitions. Oxygen isotope data suggest little change by mixing in glacial bottom water on their northward path. Benthic carbon isotope ratios at Amirante Passage differ from glacial Southern Ocean values, due possibly to absence of a local productivity effect present in the Southern Ocean.

5.
Nature ; 412(6849): 809-12, 2001 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-11518963

RESUMO

The production of cold, deep waters in the Southern Ocean is an important factor in the Earth's heat budget. The supply of deep water to the Pacific Ocean is presently dominated by a single source, the deep western boundary current east of New Zealand. Here we use sediment records deposited under the influence of this deep western boundary current to reconstruct deep-water properties and speed changes during the Pleistocene epoch. In physical and isotope proxies we find evidence for intensified deep Pacific Ocean inflow and ventilation during the glacial periods of the past 1.2 million years. The changes in throughflow may be directly related to an increased production of Antarctic Bottom Water during glacial times. Possible causes for such an increased bottom-water production include increasing wind strengths in the Southern Ocean or an increase in annual sea-ice formation, leaving dense water after brine rejection and thereby enhancing deep convection. We infer also that the global thermohaline circulation was perturbed significantly during the mid-Pleistocene climate transition between 0.86 and 0.45 million years ago.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...