Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(52): 32947-32953, 2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33310905

RESUMO

Electrocatalytic generation of H2 is challenging in neutral pH water, where high catalytic currents for the hydrogen evolution reaction (HER) are particularly sensitive to the proton source and solution characteristics. A tris(hydroxymethyl)aminomethane (TRIS) solution at pH 7 with a [2Fe-2S]-metallopolymer electrocatalyst gave catalytic current densities around two orders of magnitude greater than either a more conventional sodium phosphate solution or a potassium chloride (KCl) electrolyte solution. For a planar polycrystalline Pt disk electrode, a TRIS solution at pH 7 increased the catalytic current densities for H2 generation by 50 mA/cm2 at current densities over 100 mA/cm2 compared to a sodium phosphate solution. As a special feature of this study, TRIS is acting not only as the primary source of protons and the buffer of the pH, but the protonated TRIS ([TRIS-H]+) is also the sole cation of the electrolyte. A species that is simultaneously the proton source, buffer, and sole electrolyte is termed a protic buffer electrolyte (PBE). The structure-activity relationships of the TRIS PBE that increase the HER rate of the metallopolymer and platinum catalysts are discussed. These results suggest that appropriately designed PBEs can improve HER rates of any homogeneous or heterogeneous electrocatalyst system. General guidelines for selecting a PBE to improve the catalytic current density of HER systems are offered.

2.
ACS Macro Lett ; 7(11): 1383-1387, 2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-35651247

RESUMO

Small-molecule catalysts inspired by the active sites of [FeFe]-hydrogenase enzymes have long struggled to achieve fast rates of hydrogen evolution, long-term stability, water solubility, and oxygen compatibility. We profoundly improved on these deficiencies by grafting polymers from a metalloinitiator containing a [2Fe-2S] moiety to form water-soluble poly(2-dimethylamino)ethyl methacrylate metallopolymers (PDMAEMA-g-[2Fe-2S]) using atom transfer radical polymerization (ATRP). This study illustrates the critical role of the polymer composition in enhancing hydrogen evolution and aerobic stability by comparing the catalytic activity of PDMAEMA-g-[2Fe-2S] with a nonionic water-soluble metallopolymer based on poly(oligo(ethylene glycol) methacrylate) prepared via ATRP (POEGMA-g-[2Fe-2S]) with the same [2Fe-2S] metalloinitiator. Additionally, the tunability of catalyst activity is demonstrated by the synthesis of metallocopolymers incorporating the 2-(dimethylamino)ethyl methacrylate (DMAEMA) and oligo(ethylene glycol) methacrylate (OEGMA) monomers. Electrochemical investigations into these metallo(co)polymers show that PDMAEMA-g-[2Fe-2S] retains complete aerobic stability with catalytic current densities in excess of 20 mA·cm-2, while POEGMA-g-[2Fe-2S] fails to reach 1 mA·cm-2 current density even with the application of high overpotentials (η > 0.8 V) and loses all activity in the presence of oxygen. Random copolymers of the two monomers polymerized with the same [2Fe-2S] initiator showed intermediate activity in terms of current density, overpotential, and aerobic stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...