Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(10): 4095-4100, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37141159

RESUMO

Thermoelectric materials can harvest electrical energy from temperature gradients, and could play a role as power supplies for sensors and other devices. Here, we characterize fundamental in-plane electrical and thermoelectric properties of layered WSe2 over a range of thicknesses, from 10 to 96 nm, between 300 and 400 K. The devices are electrostatically gated with an ion gel, enabling us to probe both electron and hole regimes over a large range of carrier densities. We extract the highest n- and p-type Seebeck coefficients for thin-film WSe2, -500 and 950 µV/K respectively, reported to date at room temperature. We also emphasize the importance of low substrate thermal conductivity on such lateral thermoelectric measurements, improving this platform for future studies on other nanomaterials.

2.
ACS Appl Mater Interfaces ; 14(19): 22372-22380, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35506655

RESUMO

Accurate measurements and physical understanding of thermal boundary resistance (R) of two-dimensional (2D) materials are imperative for effective thermal management of 2D electronics and photonics. In previous studies, heat dissipation from 2D material devices was presumed to be dominated by phonon transport across the interfaces. In this study, we find that, in addition to phonon transport, thermal resistance between nonequilibrium phonons in the 2D materials could play a critical role too when the 2D material devices are internally self-heated, either optically or electrically. We accurately measure the R of oxide/MoS2/oxide and oxide/graphene/oxide interfaces for three oxides (SiO2, HfO2, and Al2O3) by differential time-domain thermoreflectance (TDTR). Our measurements of R across these interfaces with external heating are 2-4 times lower than the previously reported R of the similar interfaces measured by Raman thermometry with internal self-heating. Using a simple model, we show that the observed discrepancy can be explained by an additional internal thermal resistance (Rint) between nonequilibrium phonons present during Raman measurements. We subsequently estimate that, for MoS2 and graphene, Rint ≈ 31 and 22 m2 K GW-1, respectively. The values are comparable to the thermal resistance due to finite phonon transmission across interfaces of 2D materials and thus cannot be ignored in the design of 2D material devices. Moreover, the nonequilibrium phonons also lead to a different temperature dependence than that by phonon transport. As such, our work provides important insights into physical understanding of heat dissipation in 2D material devices.

3.
ACS Nano ; 15(5): 8484-8491, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33944559

RESUMO

High-density memory arrays require selector devices, which enable selection of a specific memory cell within a memory array by suppressing leakage current through unselected cells. Such selector devices must have highly nonlinear current-voltage characteristics and excellent endurance; thus selectors based on a tunneling mechanism present advantages over those based on the physical motion of atoms or ions. Here, we use two-dimensional (2D) materials to build an ultrathin (three-monolayer-thick) tunneling-based memory selector. Using a sandwich of h-BN, MoS2, and h-BN monolayers leads to an "H-shaped" energy barrier in the middle of the heterojunction, which nonlinearly modulates the tunneling current when the external voltage is varied. We experimentally demonstrate that tuning the MoS2 Fermi level can improve the device nonlinearity from 10 to 25. These results provide a fundamental understanding of the tunneling process through atomically thin 2D heterojunctions and lay the foundation for developing high endurance selectors with 2D heterojunctions, potentially enabling high-density non-volatile memory systems.

4.
Nano Lett ; 21(8): 3443-3450, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33852295

RESUMO

Layered semiconducting transition metal dichalcogenides (TMDs) are promising materials for high-specific-power photovoltaics due to their excellent optoelectronic properties. However, in practice, contacts to TMDs have poor charge carrier selectivity, while imperfect surfaces cause recombination, leading to a low open-circuit voltage (VOC) and therefore limited power conversion efficiency (PCE) in TMD photovoltaics. Here, we simultaneously address these fundamental issues with a simple MoOx (x ≈ 3) surface charge-transfer doping and passivation method, applying it to multilayer tungsten disulfide (WS2) Schottky-junction solar cells with initially near-zero VOC. Doping and passivation turn these into lateral p-n junction photovoltaic cells with a record VOC of 681 mV under AM 1.5G illumination, the highest among all p-n junction TMD solar cells with a practical design. The enhanced VOC also leads to record PCE in ultrathin (<90 nm) WS2 photovoltaics. This easily scalable doping and passivation scheme is expected to enable further advances in TMD electronics and optoelectronics.

5.
Nanotechnology ; 32(26)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33601363

RESUMO

Layered two-dimensional (2D) materials such as MoS2have attracted much attention for nano- and opto-electronics. Recently, intercalation (e.g. of ions, atoms, or molecules) has emerged as an effective technique to modulate material properties of such layered 2D films reversibly. We probe both the electrical and thermal properties of Li-intercalated bilayer MoS2nanosheets by combining electrical measurements and Raman spectroscopy. We demonstrate reversible modulation of carrier density over more than two orders of magnitude (from 0.8 × 1012to 1.5 × 1014cm-2), and we simultaneously obtain the thermal boundary conductance between the bilayer and its supporting SiO2substrate for an intercalated system for the first time. This thermal coupling can be reversibly modulated by nearly a factor of eight, from 14 ± 4.0 MW m-2K-1before intercalation to 1.8 ± 0.9 MW m-2K-1when the MoS2is fully lithiated. These results reveal electrochemical intercalation as a reversible tool to modulate and control both electrical and thermal properties of 2D layers.

6.
ACS Nano ; 15(1): 1587-1596, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33405894

RESUMO

Semiconductors require stable doping for applications in transistors, optoelectronics, and thermoelectrics. However, this has been challenging for two-dimensional (2D) materials, where existing approaches are either incompatible with conventional semiconductor processing or introduce time-dependent, hysteretic behavior. Here we show that low-temperature (<200 °C) substoichiometric AlOx provides a stable n-doping layer for monolayer MoS2, compatible with circuit integration. This approach achieves carrier densities >2 × 1013 cm-2, sheet resistance as low as ∼7 kΩ/□, and good contact resistance ∼480 Ω·µm in transistors from monolayer MoS2 grown by chemical vapor deposition. We also reach record current density of nearly 700 µA/µm (>110 MA/cm2) along this three-atom-thick semiconductor while preserving transistor on/off current ratio >106. The maximum current is ultimately limited by self-heating (SH) and could exceed 1 mA/µm with better device heat sinking. With their 0.1 nA/µm off-current, such doped MoS2 devices approach several low-power transistor metrics required by the international technology roadmap.

7.
ACS Nano ; 14(11): 14798-14808, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-32905703

RESUMO

Metal contacts are a key limiter to the electronic performance of two-dimensional (2D) semiconductor devices. Here, we present a comprehensive study of contact interfaces between seven metals (Y, Sc, Ag, Al, Ti, Au, Ni, with work functions from 3.1 to 5.2 eV) and monolayer MoS2 grown by chemical vapor deposition. We evaporate thin metal films onto MoS2 and study the interfaces by Raman spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, transmission electron microscopy, and electrical characterization. We uncover that (1) ultrathin oxidized Al dopes MoS2 n-type (>2 × 1012 cm-2) without degrading its mobility, (2) Ag, Au, and Ni deposition causes varying levels of damage to MoS2 (e.g. broadening Raman E' peak from <3 to >6 cm-1), and (3) Ti, Sc, and Y react with MoS2. Reactive metals must be avoided in contacts to monolayer MoS2, but control studies reveal the reaction is mostly limited to the top layer of multilayer films. Finally, we find that (4) thin metals do not significantly strain MoS2, as confirmed by X-ray diffraction. These are important findings for metal contacts to MoS2 and broadly applicable to many other 2D semiconductors.

8.
Nat Commun ; 10(1): 4465, 2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31562331

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

9.
Sci Adv ; 5(8): eaax1325, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31453337

RESUMO

Heterogeneous integration of nanomaterials has enabled advanced electronics and photonics applications. However, similar progress has been challenging for thermal applications, in part due to shorter wavelengths of heat carriers (phonons) compared to electrons and photons. Here, we demonstrate unusually high thermal isolation across ultrathin heterostructures, achieved by layering atomically thin two-dimensional (2D) materials. We realize artificial stacks of monolayer graphene, MoS2, and WSe2 with thermal resistance greater than 100 times thicker SiO2 and effective thermal conductivity lower than air at room temperature. Using Raman thermometry, we simultaneously identify the thermal resistance between any 2D monolayers in the stack. Ultrahigh thermal isolation is achieved through the mismatch in mass density and phonon density of states between the 2D layers. These thermal metamaterials are an example in the emerging field of phononics and could find applications where ultrathin thermal insulation is desired, in thermal energy harvesting, or for routing heat in ultracompact geometries.

10.
Nano Lett ; 19(10): 6751-6755, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31433663

RESUMO

The recent surge of interest in brain-inspired computing and power-efficient electronics has dramatically bolstered development of computation and communication using neuron-like spiking signals. Devices that can produce rapid and energy-efficient spiking could significantly advance these applications. Here we demonstrate direct current or voltage-driven periodic spiking with sub-20 ns pulse widths from a single device composed of a thin VO2 film with a metallic carbon nanotube as a nanoscale heater, without using an external capacitor. Compared with VO2-only devices, adding the nanotube heater dramatically decreases the transient duration and pulse energy, and increases the spiking frequency, by up to 3 orders of magnitude. This is caused by heating and cooling of the VO2 across its insulator-metal transition being localized to a nanoscale conduction channel in an otherwise bulk medium. This result provides an important component of energy-efficient neuromorphic computing systems and a lithography-free technique for energy-scaling of electronic devices that operate via bulk mechanisms.

11.
ACS Nano ; 13(10): 11070-11077, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31393698

RESUMO

Vanadium dioxide (VO2) has been widely studied for its rich physics and potential applications, undergoing a prominent insulator-metal transition (IMT) near room temperature. The transition mechanism remains highly debated, and little is known about the IMT at nanoscale dimensions. To shed light on this problem, here we use ∼1 nm-wide carbon nanotube (CNT) heaters to trigger the IMT in VO2. Single metallic CNTs switch the adjacent VO2 at less than half the voltage and power required by control devices without a CNT, with switching power as low as ∼85 µW at 300 nm device lengths. We also obtain potential and temperature maps of devices during operation using Kelvin probe microscopy and scanning thermal microscopy. Comparing these with three-dimensional electrothermal simulations, we find that the local heating of the VO2 by the CNT plays a key role in the IMT. These results demonstrate the ability to trigger IMT in VO2 using nanoscale heaters and highlight the significance of thermal engineering to improve device behavior.

12.
Nano Lett ; 19(2): 770-774, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30601667

RESUMO

We investigate the valley Hall effect (VHE) in monolayer WSe2 field-effect transistors using optical Kerr rotation measurements at 20 K. While studies of the VHE have so far focused on n -doped MoS2, we observe the VHE in WSe2 in both the n - and p -doping regimes. Hole doping enables access to the large spin-splitting of the valence band of this material. The Kerr rotation measurements probe the spatial distribution of the valley carrier imbalance induced by the VHE. Under current flow, we observe distinct spin-valley polarization along the edges of the transistor channel. From analysis of the magnitude of the Kerr rotation, we infer a spin-valley density of 44 spins/µm, integrated over the edge region in the p -doped regime. Assuming a spin diffusion length less than 0.1 µm, this corresponds to a spin-valley polarization of the holes exceeding 1%.

13.
Nat Commun ; 9(1): 4510, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30375375

RESUMO

The ability to actively regulate heat flow at the nanoscale could be a game changer for applications in thermal management and energy harvesting. Such a breakthrough could also enable the control of heat flow using thermal circuits, in a manner analogous to electronic circuits. Here we demonstrate switchable thermal transistors with an order of magnitude thermal on/off ratio, based on reversible electrochemical lithium intercalation in MoS2 thin films. We use spatially-resolved time-domain thermoreflectance to map the lithium ion distribution during device operation, and atomic force microscopy to show that the lithiated state correlates with increased thickness and surface roughness. First principles calculations reveal that the thermal conductance modulation is due to phonon scattering by lithium rattler modes, c-axis strain, and stacking disorder. This study lays the foundation for electrochemically-driven nanoscale thermal regulators, and establishes thermal metrology as a useful probe of spatio-temporal intercalant dynamics in nanomaterials.

14.
Nano Lett ; 18(5): 2822-2827, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29620900

RESUMO

Black phosphorus (BP) is a promising two-dimensional (2D) material for nanoscale transistors, due to its expected higher mobility than other 2D semiconductors. While most studies have reported ambipolar BP with a stronger p-type transport, it is important to fabricate both unipolar p- and n-type transistors for low-power digital circuits. Here, we report unipolar n-type BP transistors with low work function Sc and Er contacts, demonstrating a record high n-type current of 200 µA/µm in 6.5 nm thick BP. Intriguingly, the electrical transport of the as-fabricated, capped devices changes from ambipolar to n-type unipolar behavior after a month at room temperature. Transmission electron microscopy analysis of the contact cross-section reveals an intermixing layer consisting of partly oxidized metal at the interface. This intermixing layer results in a low n-type Schottky barrier between Sc and BP, leading to the unipolar behavior of the BP transistor. This unipolar transport with a suppressed p-type current is favorable for digital logic circuits to ensure a lower off-power consumption.

15.
ACS Appl Mater Interfaces ; 9(49): 43013-43020, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29053241

RESUMO

The electrical and thermal behavior of nanoscale devices based on two-dimensional (2D) materials is often limited by their contacts and interfaces. Here we report the temperature-dependent thermal boundary conductance (TBC) of monolayer MoS2 with AlN and SiO2, using Raman thermometry with laser-induced heating. The temperature-dependent optical absorption of the 2D material is crucial in such experiments, which we characterize here for the first time above room temperature. We obtain TBC ∼ 15 MW m-2 K-1 near room temperature, increasing as ∼ T0.65 in the range 300-600 K. The similar TBC of MoS2 with the two substrates indicates that MoS2 is the "softer" material with weaker phonon irradiance, and the relatively low TBC signifies that such interfaces present a key bottleneck in energy dissipation from 2D devices. Our approach is needed to correctly perform Raman thermometry of 2D materials, and our findings are key for understanding energy coupling at the nanoscale.

16.
Nano Lett ; 17(6): 3854-3861, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28537732

RESUMO

Two-dimensional (2D) molybdenum trioxide (MoO3) with mono- or few-layer thickness can potentially advance many applications, ranging from optoelectronics, catalysis, sensors, and batteries to electrochromic devices. Such ultrathin MoO3 sheets can also be integrated with other 2D materials (e.g., as dopants) to realize new or improved electronic devices. However, there is lack of a rapid and scalable method to controllably grow mono- or few-layer MoO3. Here, we report the first demonstration of using a rapid (<2 min) flame synthesis method to deposit mono- and few-layer MoO3 sheets (several microns in lateral dimension) on a wide variety of layered materials, including mica, MoS2, graphene, and WSe2, based on van der Waals epitaxy. The flame-grown ultrathin MoO3 sheet functions as an efficient hole doping layer for WSe2, enabling WSe2 to reach the lowest sheet and contact resistance reported to date among all the p-type 2D materials (∼6.5 kΩ/□ and ∼0.8 kΩ·µm, respectively). These results demonstrate that flame synthesis is a rapid and scalable pathway to growing atomically thin 2D metal oxides, opening up new opportunities for advancing 2D electronics.

17.
Nano Lett ; 17(6): 3429-3433, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28388845

RESUMO

The advancement of nanoscale electronics has been limited by energy dissipation challenges for over a decade. Such limitations could be particularly severe for two-dimensional (2D) semiconductors integrated with flexible substrates or multilayered processors, both being critical thermal bottlenecks. To shed light into fundamental aspects of this problem, here we report the first direct measurement of spatially resolved temperature in functioning 2D monolayer MoS2 transistors. Using Raman thermometry, we simultaneously obtain temperature maps of the device channel and its substrate. This differential measurement reveals the thermal boundary conductance of the MoS2 interface with SiO2 (14 ± 4 MW m-2 K-1) is an order magnitude larger than previously thought, yet near the low end of known solid-solid interfaces. Our study also reveals unexpected insight into nonuniformities of the MoS2 transistors (small bilayer regions) which do not cause significant self-heating, suggesting that such semiconductors are less sensitive to inhomogeneity than expected. These results provide key insights into energy dissipation of 2D semiconductors and pave the way for the future design of energy-efficient 2D electronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...