Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rapid Commun Mass Spectrom ; 32(23): 2024-2030, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30133876

RESUMO

RATIONALE: Ion trap mass spectrometers are attractive due to their inherent sensitivity and specificity. Miniaturization increases trap portability for in situ mass analysis by relaxing vacuum and voltage requirements but decreases the trapping volume. To overcome signal/resolution loss from miniaturization, double resonance ejection using phase tracking circuitry was investigated. METHODS: Phase tracking circuitry was developed to induce double resonance ejection in a planar linear ion trap using the ß 2/3 hexapole resonance line. RESULTS: Double resonance was observed using phase tracking circuitry. Resolution of 0.5 m/z units and improved signal-to-noise ratio (SNR) compared with AC resonant ejection were achieved. CONCLUSIONS: The phase tracking circuitry proved effective despite deviations from a true phase locked condition. Double resonance ejection is a means to increase signal intensity in a miniaturized planar ion trap.

2.
J Am Soc Mass Spectrom ; 29(7): 1376-1385, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29623663

RESUMO

The performance of miniaturized ion trap mass analyzers is limited, in part, by the accuracy with which electrodes can be fabricated and positioned relative to each other. Alignment of plates in a two-plate planar LIT is ideal to characterize misalignment effects, as it represents the simplest possible case, having only six degrees of freedom (DOF) (three translational and three rotational). High-precision motorized actuators were used to vary the alignment between the two ion trap plates in five DOFs-x, y, z, pitch, and yaw. A comparison between the experiment and previous simulations shows reasonable agreement. Pitch, or the degree to which the plates are parallel along the axial direction, has the largest and sharpest impact to resolving power, with resolving power dropping noticeably with pitch misalignment of a fraction of a degree. Lateral displacement (x) and yaw (rotation of one plate, but plates remain parallel) both have a strong impact on ion ejection efficiency, but little effect on resolving power. The effects of plate spacing (y-displacement) on both resolving power and ion ejection efficiency are attributable to higher-order terms in the trapping field. Varying the DC (axial) trapping potential can elucidate the effects where more misalignments in more than one DOF affect performance. Implications of these results for miniaturized ion traps are discussed. Graphical Abstract ᅟ.

3.
J Am Soc Mass Spectrom ; 29(2): 213-222, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28836122

RESUMO

We present a new two-plate linear ion trap mass spectrometer that overcomes both performance-based and miniaturization-related issues with prior designs. Borosilicate glass substrates are patterned with aluminum electrodes on one side and wire-bonded to printed circuit boards. Ions are trapped in the space between two such plates. Tapered ejection slits in each glass plate eliminate issues with charge build-up within the ejection slit and with blocking of ions that are ejected at off-nominal angles. The tapered slit allows miniaturization of the trap features (electrode size, slit width) needed for further reduction of trap size while allowing the use of substrates that are still thick enough to provide ruggedness during handling, assembly, and in-field applications. Plate spacing was optimized during operation using a motorized translation stage. A scan rate of 2300 Th/s with a sample mixture of toluene and deuterated toluene (D8) and xylenes (a mixture of o-, m-, p-) showed narrowest peak widths of 0.33 Th (FWHM). Graphical Abstract ᅟ.

4.
Rapid Commun Mass Spectrom ; 32(4): 289-294, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29131427

RESUMO

RATIONALE: Ion trap mass spectrometers are beneficial due to their intrinsic sensitivity and specificity. Therefore, a portable version for in situ analysis of various compounds is very attractive. Miniaturization of ion traps is paramount for the portability of such mass spectrometers. METHODS: We developed an optimized design for a planar linear ion trap mass spectrometer, consisting of two trapping plates with photolithographically patterned electrodes. Each plate is constructed using a machined glass substrate and standard microfabrication procedures. The plates are attached to a patterned circuit board via wire bonds then positioned approximately 5 mm apart. RESULTS: Trapped ions are detected by ejecting them through tapered slits, which alleviate charge buildup. Mass analysis can be performed through either boundary or resonant ion ejection. Better than unit mass resolution is demonstrated with resonant ejection. CONCLUSIONS: The optimized planar linear ion trap provides good resolution and the potential for further miniaturization. This was accomplished by vigorously testing variables associated with ion trap design including electrical connections, substrate materials, and electrode designs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...