Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Crit Rev Toxicol ; 53(8): 480, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37873658
2.
Crit Rev Toxicol ; 53(8): 441-479, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37850621

RESUMO

The mechanisms of particle-induced pathogenesis in the lung remain poorly understood. Neutrophilic inflammation and oxidative stress in the lung are hallmarks of toxicity. Some investigators have postulated that oxidative stress from particle surface reactive oxygen species (psROS) on the dust produces the toxicopathology in the lungs of dust-exposed animals. This postulate was tested concurrently with the studies to elucidate the toxicity of lunar dust (LD), which is believed to contain psROS due to high-speed micrometeoroid bombardment that fractured and pulverized lunar surface regolith. Results from studies of rats intratracheally instilled (ITI) with three LDs (prepared from an Apollo-14 lunar regolith), which differed 14-fold in levels of psROS, and two toxicity reference dusts (TiO2 and quartz) indicated that psROS had no significant contribution to the dusts' toxicity in the lung. Reported here are results of further investigations by the LD toxicity study team on the toxicological role of oxidants in alveolar neutrophils that were harvested from rats in the 5-dust ITI study and from rats that were exposed to airborne LD for 4 weeks. The oxidants per neutrophils and all neutrophils increased with dose, exposure time and dust's cytotoxicity. The results suggest that alveolar neutrophils play a critical role in particle-induced injury and toxicity in the lung of dust-exposed animals. Based on these results, we propose an adverse outcome pathway (AOP) for particle-associated lung disease that centers on the crucial role of alveolar neutrophil-derived oxidant species. A critical review of the toxicology literature on particle exposure and lung disease further supports a neutrophil-centric mechanism in the pathogenesis of lung disease and may explain previously reported animal species differences in responses to poorly soluble particles. Key findings from the toxicology literature indicate that (1) after exposures to the same dust at the same amount, rats have more alveolar neutrophils than hamsters; hamsters clear more particles from their lungs, consequently contributing to fewer neutrophils and less severe lung lesions; (2) rats exposed to nano-sized TiO2 have more neutrophils and more severe lesions in their lungs than rats exposed to the same mass-concentration of micron-sized TiO2; nano-sized dust has a greater number of particles and a larger total particle-cell contact surface area than the same mass of micron-sized dust, which triggers more alveolar epithelial cells (AECs) to synthesize and release more cytokines that recruit a greater number of neutrophils leading to more severe lesions. Thus, we postulate that, during chronic dust exposure, particle-inflicted AECs persistently release cytokines, which recruit neutrophils and activate them to produce oxidants resulting in a prolonged continuous source of endogenous oxidative stress that leads to lung toxicity. This neutrophil-driven lung pathogenesis explains why dust exposure induces more severe lesions in rats than hamsters; why, on a mass-dose basis, nano-sized dusts are more toxic than the micron-sized dusts; why lung lesions progress with time; and why dose-response curves of particle toxicity exhibit a hockey stick like shape with a threshold. The neutrophil centric AOP for particle-induced lung disease has implications for risk assessment of human exposures to dust particles and environmental particulate matter.


Assuntos
Poeira , Pneumopatias , Cricetinae , Ratos , Humanos , Animais , Neutrófilos/patologia , Pulmão , Citocinas/toxicidade , Oxidantes/toxicidade , Tamanho da Partícula
3.
Inhal Toxicol ; 34(3-4): 51-67, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35294311

RESUMO

Humans will set foot on the Moon again soon. The lunar dust (LD) is potentially reactive and could pose an inhalation hazard to lunar explorers. We elucidated LD toxicity and investigated the toxicological impact of particle surface reactivity (SR) using three LDs, quartz, and TiO2. We first isolated the respirable-size-fraction of an Apollo-14 regolith and ground two coarser samples to produce fine LDs with increased SR. SR measurements of these five respirable-sized dusts, determined by their in-vitro ability to generate hydroxyl radicals (•OH), showed that ground LDs > unground LD ≥ TiO2 ≥ quartz. Rats were each intratracheally instilled with 0, 1, 2.5, or 7.5 mg of a test dust. Toxicity biomarkers and histopathology were assessed up to 13 weeks after the bolus instillation. All dusts caused dose-dependent-increases in pulmonary lesions and toxicity biomarkers. The three LDs, which possessed mineral compositions/properties similar to Arizona volcanic ash, were moderately toxic. Despite a 14-fold •OH difference among these three LDs, their toxicities were indistinguishable. Quartz produced the lowest •OH amount but showed the greatest toxicity. Our results showed no correlation between the toxicity of mineral dusts and their ability to generate free radicals. We also showed that the amounts of oxidants per neutrophil increased with doses, time and the cytotoxicity of the dusts in the lung, which supports our postulation that dust-elicited neutrophilia is the major persistent source of oxidative stress. These results and the discussion of the crucial roles of the short-lived, continuously replenished neutrophils in dust-induced pathogenesis are presented.


Assuntos
Poeira , Pneumopatias , Animais , Biomarcadores , Poeira/análise , Pneumopatias/induzido quimicamente , Lua , Oxidantes/toxicidade , Quartzo/toxicidade , Ratos , Dióxido de Silício/toxicidade , Titânio
6.
Health Phys ; 117(2): 211-222, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31219903

RESUMO

The US Transuranium and Uranium Registries is a human tissue program that collects tissues posthumously from former nuclear workers and radiochemically analyzes them for actinides such as plutonium, americium, and uranium. It was established in 1968 with the goal of advancing science and improving the safety of future workers. Roundtable participants recalled various aspects of this multidisciplinary research program, from establishing consistent autopsy protocols to comparing the registries' findings to those of other programs, such as the historical beagle dog studies and the Russian Radiobiological Human Tissue Repository. The importance of meeting ethical and legal requirements, including written consent forms, was emphasized, as was the need to know whether workers were exposed to nonradiological hazards such as beryllium or asbestos. At Rocky Flats, a bioassay program was established to follow workers after they terminated employment. The resulting data continue to help researchers to improve the biokinetic models that are used to estimate intakes and radiation doses. After 50 y, the US Transuranium and Uranium Registries continues to contribute to our understanding of actinides in humans, which is a testament to the vision of its founders, the generosity of its tissue donors, and the many dedicated scientists who have worked together to achieve a common goal.


Assuntos
Doenças Profissionais/etiologia , Exposição Ocupacional/análise , Plutônio/farmacocinética , Lesões por Radiação/etiologia , Sistema de Registros/estatística & dados numéricos , Urânio/farmacocinética , Animais , Cães , Seguimentos , Humanos , Doenças Profissionais/epidemiologia , Exposição Ocupacional/efeitos adversos , Plutônio/efeitos adversos , Plutônio/análise , Lesões por Radiação/epidemiologia , Distribuição Tecidual , Estados Unidos/epidemiologia , Urânio/efeitos adversos , Urânio/análise
9.
Am J Epidemiol ; 187(6): 1210-1219, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29522073

RESUMO

The Diesel Exhaust in Miners Study (DEMS) (United States, 1947-1997) reported positive associations between diesel engine exhaust exposure, estimated as respirable elemental carbon (REC), and lung cancer mortality. This reanalysis of the DEMS cohort used an alternative estimate of REC exposure incorporating historical data on diesel equipment, engine horsepower, ventilation rates, and declines in particulate matter emissions per horsepower. Associations with cumulative REC and average REC intensity using the alternative REC estimate and other exposure estimates were generally attenuated compared with original DEMS REC estimates. Most findings were statistically nonsignificant; control for radon exposure substantially weakened associations with the original and alternative REC estimates. No association with original or alternative REC estimates was detected among miners who worked exclusively underground. Positive associations were detected among limestone workers, whereas no association with REC or radon was found among workers in the other 7 mines. The differences in results based on alternative exposure estimates, control for radon, and stratification by worker location or mine type highlight areas of uncertainty in the DEMS data.


Assuntos
Poluentes Ocupacionais do Ar/análise , Neoplasias Pulmonares/mortalidade , Doenças Profissionais/mortalidade , Exposição Ocupacional/análise , Radônio/análise , Emissões de Veículos/análise , Adulto , Carbono/análise , Monitoramento Ambiental , Feminino , Humanos , Neoplasias Pulmonares/etiologia , Masculino , Mineração , Doenças Profissionais/etiologia , Fatores de Risco , Estados Unidos/epidemiologia
12.
Risk Anal ; 36(9): 1755-65, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27629788

RESUMO

Four papers on fine particulate matter (PM2.5 ) by Anenberg et al., Fann et al., Shin et al., and Smith contribute to a growing body of literature on estimated epidemiological associations between ambient PM2.5 concentrations and increases in health responses relative to baseline notes. This article provides context for the four articles, including a historical review of provisions of the U.S. Clean Air Act as amended in 1970, requiring the setting of National Ambient Air Quality Standards (NAAQS) for criteria pollutants such as particulate matter (PM). The substantial improvements in both air quality for PM and population health as measured by decreased mortality rates are illustrated. The most recent revision of the NAAQS for PM2.5 in 2013 by the Environmental Protection Agency distinguished between (1) uncertainties in characterizing PM2.5 as having a causal association with various health endpoints, and as all-cause mortality, and (2) uncertainties in concentration--excess health response relationships at low ambient PM2.5 concentrations below the majority of annual concentrations studied in the United States in the past. In future reviews, and potential revisions, of the NAAQS for PM2.5 , it will be even more important to distinguish between uncertainties in (1) characterizing the causal associations between ambient PM2.5 concentrations and specific health outcomes, such as all-source mortality, irrespective of the concentrations, (2) characterizing the potency of major constituents of PM2.5 , and (3) uncertainties in the association between ambient PM2.5 concentrations and specific health outcomes at various ambient PM2.5 concentrations. The latter uncertainties are of special concern as ambient PM2.5 concentrations and health morbidity and mortality rates approach background or baseline rates.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental/legislação & jurisprudência , Material Particulado/análise , Medição de Risco/métodos , Exposição Ambiental , Humanos , Mortalidade , Tamanho da Partícula , Fatores de Tempo , Estados Unidos , United States Environmental Protection Agency
13.
Crit Rev Toxicol ; 46(sup1): 1-2, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27677665
14.
Risk Anal ; 36(9): 1803-12, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26905315

RESUMO

The landmark Diesel Exhaust in Miners Study (DEMS) studied the relationship between diesel exhaust exposure (DEE) and lung cancer mortality of workers at eight nonmetal mines who were followed from beginning of dieselization of the mines (1947-1967) through December 31, 1997. The original analyses quantified DEE exposures using exposure to respirable elemental carbon (REC) to represent DEE, and CO as a surrogate for REC. However, this use of CO data, and the CO data themselves, have numerous shortcomings. We developed new estimates of REC exposures using historical data on use of diesel equipment, diesel engine horsepower (HP), mine ventilation rates, and the documented reduction in particulate matter emissions per HP in diesel engines from 1975 through 1995. These new REC estimates were applied in a conditional logistic regression of the DEMS nested case-control data very similar to the one applied in the original DEMS analyses. None of the trend slopes calculated using the new REC estimates were statistically significant (p > 0.05). Moreover, these trend slopes were smaller by roughly factors of five without control for radon exposure and factors of 12 with control for radon exposure compared to those estimated in the original DEMS analyses. Also, the 95% confidence intervals for these trend slopes had only minimal overlap with those for the slopes in the original DEMS analyses. These results underscore the uncertainty in estimates of the potency of diesel exhaust in causing lung cancer based on analysis of the DEMS data due to uncertainty in estimates of exposures to diesel exhaust.


Assuntos
Poluentes Ocupacionais do Ar/análise , Gasolina , Exposição por Inalação/análise , Neoplasias Pulmonares/etiologia , Mineração , Emissões de Veículos , Carbono/análise , Estudos de Casos e Controles , Estudos de Coortes , Monitoramento Ambiental/métodos , Humanos , Neoplasias Pulmonares/mortalidade , Mineradores , Exposição Ocupacional/análise , Material Particulado , Análise de Regressão , Medição de Risco , Fatores de Risco , Estados Unidos
15.
16.
Science ; 349(6247): 486, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26228134
17.
Risk Anal ; 35(4): 676-700, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25857246

RESUMO

The International Agency for Research on Cancer (IARC) in 2012 upgraded its hazard characterization of diesel engine exhaust (DEE) to "carcinogenic to humans." The Diesel Exhaust in Miners Study (DEMS) cohort and nested case-control studies of lung cancer mortality in eight U.S. nonmetal mines were influential in IARC's determination. We conducted a reanalysis of the DEMS case-control data to evaluate its suitability for quantitative risk assessment (QRA). Our reanalysis used conditional logistic regression and adjusted for cigarette smoking in a manner similar to the original DEMS analysis. However, we included additional estimates of DEE exposure and adjustment for radon exposure. In addition to applying three DEE exposure estimates developed by DEMS, we applied six alternative estimates. Without adjusting for radon, our results were similar to those in the original DEMS analysis: all but one of the nine DEE exposure estimates showed evidence of an association between DEE exposure and lung cancer mortality, with trend slopes differing only by about a factor of two. When exposure to radon was adjusted, the evidence for a DEE effect was greatly diminished, but was still present in some analyses that utilized the three original DEMS DEE exposure estimates. A DEE effect was not observed when the six alternative DEE exposure estimates were utilized and radon was adjusted. No consistent evidence of a DEE effect was found among miners who worked only underground. This article highlights some issues that should be addressed in any use of the DEMS data in developing a QRA for DEE.


Assuntos
Neoplasias Pulmonares/induzido quimicamente , Emissões de Veículos/toxicidade , Estudos de Casos e Controles , Humanos , Medição de Risco , Estados Unidos
18.
Risk Anal ; 35(4): 663-75, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25683254

RESUMO

To develop a quantitative exposure-response relationship between concentrations and durations of inhaled diesel engine exhaust (DEE) and increases in lung cancer risks, we examined the role of temporal factors in modifying the estimated effects of exposure to DEE on lung cancer mortality and characterized risk by mine type in the Diesel Exhaust in Miners Study (DEMS) cohort, which followed 12,315 workers through December 1997. We analyzed the data using parametric functions based on concepts of multistage carcinogenesis to directly estimate the hazard functions associated with estimated exposure to a surrogate marker of DEE, respirable elemental carbon (REC). The REC-associated risk of lung cancer mortality in DEMS is driven by increased risk in only one of four mine types (limestone), with statistically significant heterogeneity by mine type and no significant exposure-response relationship after removal of the limestone mine workers. Temporal factors, such as duration of exposure, play an important role in determining the risk of lung cancer mortality following exposure to REC, and the relative risk declines after exposure to REC stops. There is evidence of effect modification of risk by attained age. The modifying impact of temporal factors and effect modification by age should be addressed in any quantitative risk assessment (QRA) of DEE. Until there is a better understanding of why the risk appears to be confined to a single mine type, data from DEMS cannot reliably be used for QRA.


Assuntos
Exposição Ambiental , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/mortalidade , Emissões de Veículos/toxicidade , Carcinógenos/toxicidade , Humanos , Modelos de Riscos Proporcionais , Fatores de Risco , Fatores de Tempo
19.
Inhal Toxicol ; 25(12): 661-78, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24102467

RESUMO

Humans will again set foot on the moon. The moon is covered by a layer of fine dust, which can pose a respiratory hazard. We investigated the pulmonary toxicity of lunar dust in rats exposed to 0, 2.1, 6.8, 20.8 and 60.6 mg/m(3) of respirable-size lunar dust for 4 weeks (6 h/day, 5 days/week); the aerosols in the nose-only exposure chambers were generated from a jet-mill ground preparation of a lunar soil collected during the Apollo 14 mission. After 4 weeks of exposure to air or lunar dust, groups of five rats were euthanized 1 day, 1 week, 4 weeks or 13 weeks after the last exposure for assessment of pulmonary toxicity. Biomarkers of toxicity assessed in bronchoalveolar fluids showed concentration-dependent changes; biomarkers that showed treatment effects were total cell and neutrophil counts, total protein concentrations and cellular enzymes (lactate dehydrogenase, glutamyl transferase and aspartate transaminase). No statistically significant differences in these biomarkers were detected between rats exposed to air and those exposed to the two low concentrations of lunar dust. Dose-dependent histopathology, including inflammation, septal thickening, fibrosis and granulomas, in the lung was observed at the two higher exposure concentrations. No lesions were detected in rats exposed to ≤6.8 mg/m(3). This 4-week exposure study in rats showed that 6.8 mg/m(3) was the highest no-observable-adverse-effect level (NOAEL). These results will be useful for assessing the health risk to humans of exposure to lunar dust, establishing human exposure limits and guiding the design of dust mitigation systems in lunar landers or habitats.


Assuntos
Poeira Cósmica/efeitos adversos , Pulmão/efeitos dos fármacos , Lua , Administração por Inalação , Animais , Aspartato Aminotransferases/metabolismo , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Contagem de Células , L-Lactato Desidrogenase/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Masculino , Nível de Efeito Adverso não Observado , Ratos , Ratos Endogâmicos F344 , Testes de Toxicidade Subaguda , gama-Glutamiltransferase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...