Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biostatistics ; 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39002144

RESUMO

High-dimensional omics data often contain intricate and multifaceted information, resulting in the coexistence of multiple plausible sample partitions based on different subsets of selected features. Conventional clustering methods typically yield only one clustering solution, limiting their capacity to fully capture all facets of cluster structures in high-dimensional data. To address this challenge, we propose a model-based multifacet clustering (MFClust) method based on a mixture of Gaussian mixture models, where the former mixture achieves facet assignment for gene features and the latter mixture determines cluster assignment of samples. We demonstrate superior facet and cluster assignment accuracy of MFClust through simulation studies. The proposed method is applied to three transcriptomic applications from postmortem brain and lung disease studies. The result captures multifacet clustering structures associated with critical clinical variables and provides intriguing biological insights for further hypothesis generation and discovery.

2.
bioRxiv ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39005410

RESUMO

Previous studies have shown that there are rhythms in gene expression in the mouse prefrontal cortex (PFC); however, the contribution of different cell types and potential variation by sex has not yet been determined. Of particular interest are excitatory pyramidal cells and inhibitory parvalbumin (PV) interneurons, as interactions between these cell types are essential for regulating the excitation/inhibition balance and controlling many of the cognitive functions regulated by the PFC. In this study, we identify cell-type specific rhythms in the translatome of PV and pyramidal cells in the mouse medial PFC (mPFC) and assess diurnal rhythms in PV cell electrophysiological properties. We find that while core molecular clock genes are conserved and synchronized between cell types, pyramidal cells have nearly twice as many rhythmic transcripts as PV cells (35% vs. 18%). Rhythmic transcripts in pyramidal cells also show a high degree of overlap between sexes, both in terms of which transcripts are rhythmic and in the biological processes associated with them. Conversely, in PV cells, rhythmic transcripts from males and females are largely distinct. Moreover, we find sex-specific effects of phase on action potential properties in PV cells that are eliminated by environmental circadian disruption. Together, this study demonstrates that rhythms in gene expression and electrophysiological properties in the mouse mPFC vary both by cell type and by sex. Moreover, the biological processes associated with these rhythmic transcripts may provide insight into the unique functions of rhythms in these cells, as well as their selective vulnerabilities to circadian disruption. Significance statement: This is the first study to examine translatomic rhythms in the mouse mPFC with cell-type specificity. We find that the core molecular clock cycles in phase across cell types, indicating that previously described daily oscillations in the cortical excitation/inhibition balance are not the consequence of a phase offset between PV and pyramidal cells. Nevertheless, rhythmic transcripts and their associated biological processes differ by both sex and cell type, suggesting that molecular rhythms may play a unique role in different cell types. Therefore, our results, such as the enrichment of transcripts associated with mitochondrial function in PV cells from males, point towards possible cell and sex-specific mechanisms that could contribute to psychiatric and cognitive diseases when rhythms are disrupted.

3.
bioRxiv ; 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38979139

RESUMO

In rodents, anxiety is charactered by heightened vigilance during low-threat and uncertain situations. Though activity in the frontal cortex and limbic system are fundamental to supporting this internal state, the underlying network architecture that integrates activity across brain regions to encode anxiety across animals and paradigms remains unclear. Here, we utilize parallel electrical recordings in freely behaving mice, translational paradigms known to induce anxiety, and machine learning to discover a multi-region network that encodes the anxious brain-state. The network is composed of circuits widely implicated in anxiety behavior, it generalizes across many behavioral contexts that induce anxiety, and it fails to encode multiple behavioral contexts that do not. Strikingly, the activity of this network is also principally altered in two mouse models of depression. Thus, we establish a network-level process whereby the brain encodes anxiety in health and disease.

4.
Biol Psychiatry ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38735357

RESUMO

Circadian rhythms are approximate 24-hour rhythms present in nearly all aspects of human physiology, including proper brain function. These rhythms are produced at the cellular level through a transcriptional-translational feedback loop known as the molecular clock. Diurnal variation in gene expression has been demonstrated in brain tissue from multiple species, including humans, in both cortical and subcortical regions. Interestingly, these rhythms in gene expression have been shown to be disrupted across psychiatric disorders and may be implicated in their underlying pathophysiology. However, little is known regarding molecular rhythms in specific cell types in the brain and how they might be involved in psychiatric disease. Although glial cells (e.g., astrocytes, microglia, and oligodendrocytes) have been historically understudied compared to neurons, evidence of the molecular clock is found within each of these cell subtypes. Here, we review the current literature, which suggests that molecular rhythmicity is essential to functional physiologic outputs from each glial subtype. Furthermore, disrupted molecular rhythms within these cells and the resultant functional deficits may be relevant to specific phenotypes across psychiatric illnesses. Given that circadian rhythm disruptions have been so integrally tied to psychiatric disease, the molecular mechanisms governing these associations could represent exciting new avenues for future research and potential novel pharmacologic targets for treatment.

5.
Mol Psychiatry ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678086

RESUMO

Circadian rhythms are critical for human health and are highly conserved across species. Disruptions in these rhythms contribute to many diseases, including psychiatric disorders. Previous results suggest that circadian genes modulate behavior through specific cell types in the nucleus accumbens (NAc), particularly dopamine D1-expressing medium spiny neurons (MSNs). However, diurnal rhythms in transcript expression have not been investigated in NAc MSNs. In this study we identified and characterized rhythmic transcripts in D1- and D2-expressing neurons and compared rhythmicity results to homogenate as well as astrocyte samples taken from the NAc of male and female mice. We find that all cell types have transcripts with diurnal rhythms and that top rhythmic transcripts are largely core clock genes, which peak at approximately the same time of day in each cell type and sex. While clock-controlled rhythmic transcripts are enriched for protein regulation pathways across cell type, cell signaling and signal transduction related processes are most commonly enriched in MSNs. In contrast to core clock genes, these clock-controlled rhythmic transcripts tend to reach their peak in expression about 2-h later in females than males, suggesting diurnal rhythms in reward may be delayed in females. We also find sex differences in pathway enrichment for rhythmic transcripts peaking at different times of day. Protein folding and immune responses are enriched in transcripts that peak in the dark phase, while metabolic processes are primarily enriched in transcripts that peak in the light phase. Importantly, we also find that several classic markers used to categorize MSNs are rhythmic in the NAc. This is critical since the use of rhythmic markers could lead to over- or under-enrichment of targeted cell types depending on the time at which they are sampled. This study greatly expands our knowledge of how individual cell types contribute to rhythms in the NAc.

6.
Adv Sci (Weinh) ; 11(27): e2308212, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38430532

RESUMO

Substantial evidence has shown that the Circadian Locomotor Output Cycles Kaput (Clock) gene is a core transcription factor of circadian rhythms that regulates dopamine (DA) synthesis. To shed light on the mechanism of this interaction, flexible multielectrode arrays (MEAs) are developed that can measure both DA concentrations and electrophysiology chronically. The dual functionality is enabled by conducting polymer PEDOT doped with acid-functionalized carbon nanotubes (CNT). The PEDOT/CNT microelectrode coating maintained stable electrochemical impedance and DA detection by square wave voltammetry for 4 weeks in vitro. When implanted in wild-type (WT) and Clock mutation (MU) mice, MEAs measured tonic DA concentration and extracellular neural activity with high spatial and temporal resolution for 4 weeks. A diurnal change of DA concentration in WT is observed, but not in MU, and a higher basal DA concentration and stronger cocaine-induced DA increase in MU. Meanwhile, striatal neuronal firing rate is found to be positively correlated with DA concentration in both animal groups. These findings offer new insights into DA dynamics in the context of circadian rhythm regulation, and the chronically reliable performance and dual measurement capability of this technology hold great potential for a broad range of neuroscience research.


Assuntos
Proteínas CLOCK , Dopamina , Nanotubos de Carbono , Animais , Dopamina/metabolismo , Camundongos , Nanotubos de Carbono/química , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Microeletrodos , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Polímeros/química , Polímeros/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Masculino
7.
Proc Natl Acad Sci U S A ; 121(9): e2214756121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38394243

RESUMO

Sleep, circadian rhythms, and mental health are reciprocally interlinked. Disruption to the quality, continuity, and timing of sleep can precipitate or exacerbate psychiatric symptoms in susceptible individuals, while treatments that target sleep-circadian disturbances can alleviate psychopathology. Conversely, psychiatric symptoms can reciprocally exacerbate poor sleep and disrupt clock-controlled processes. Despite progress in elucidating underlying mechanisms, a cohesive approach that integrates the dynamic interactions between psychiatric disorder with both sleep and circadian processes is lacking. This review synthesizes recent evidence for sleep-circadian dysfunction as a transdiagnostic contributor to a range of psychiatric disorders, with an emphasis on biological mechanisms. We highlight observations from adolescent and young adults, who are at greatest risk of developing mental disorders, and for whom early detection and intervention promise the greatest benefit. In particular, we aim to a) integrate sleep and circadian factors implicated in the pathophysiology and treatment of mood, anxiety, and psychosis spectrum disorders, with a transdiagnostic perspective; b) highlight the need to reframe existing knowledge and adopt an integrated approach which recognizes the interaction between sleep and circadian factors; and c) identify important gaps and opportunities for further research.


Assuntos
Transtornos Mentais , Transtornos do Sono-Vigília , Adulto Jovem , Adolescente , Humanos , Transtornos Mentais/etiologia , Transtornos Mentais/terapia , Sono/fisiologia , Ritmo Circadiano/fisiologia , Saúde Mental , Transtornos do Humor
8.
Neuropsychopharmacology ; 49(5): 796-805, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38182777

RESUMO

The human striatum can be subdivided into the caudate, putamen, and nucleus accumbens (NAc). In mice, this roughly corresponds to the dorsal medial striatum (DMS), dorsal lateral striatum (DLS), and ventral striatum (NAc). Each of these structures have some overlapping and distinct functions related to motor control, cognitive processing, motivation, and reward. Previously, we used a "time-of-death" approach to identify diurnal rhythms in RNA transcripts in these three human striatal subregions. Here, we identify molecular rhythms across similar striatal subregions collected from C57BL/6J mice across 6 times of day and compare results to the human striatum. Pathway analysis indicates a large degree of overlap between species in rhythmic transcripts involved in processes like cellular stress, energy metabolism, and translation. Notably, a striking finding in humans is that small nucleolar RNAs (snoRNAs) and long non-coding RNAs (lncRNAs) are among the most highly rhythmic transcripts in the NAc and this is not conserved in mice, suggesting the rhythmicity of RNA processing in this region could be uniquely human. Furthermore, the peak timing of overlapping rhythmic genes is altered between species, but not consistently in one direction. Taken together, these studies reveal conserved as well as distinct transcriptome rhythms across the human and mouse striatum and are an important step in understanding the normal function of diurnal rhythms in humans and model organisms in these regions and how disruption could lead to pathology.


Assuntos
Corpo Estriado , Estriado Ventral , Humanos , Camundongos , Animais , Camundongos Endogâmicos C57BL , Corpo Estriado/metabolismo , Núcleo Accumbens , Perfilação da Expressão Gênica , Transcriptoma
9.
Neuron ; 112(1): 25-40, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37858331

RESUMO

The importance of time is ever prevalent in our world, and disruptions to the normal light/dark and sleep/wake cycle have now become the norm rather than the exception for a large part of it. All mood disorders, including seasonal affective disorder (SAD), major depressive disorder (MDD), and bipolar disorder (BD), are strongly associated with abnormal sleep and circadian rhythms in a variety of physiological processes. Environmental disruptions to normal sleep/wake patterns, light/dark changes, and seasonal changes can precipitate episodes. Moreover, treatments that target the circadian system have proven to be therapeutic in certain cases. This review will summarize much of our current knowledge of how these disorders associate with specific circadian phenotypes, as well as the neuronal mechanisms that link the circadian clock with mood regulation. We also discuss what has been learned from therapies that target circadian rhythms and how we may use current knowledge to develop more individually designed treatments.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Humanos , Transtornos do Humor , Transtorno Depressivo Maior/genética , Ritmo Circadiano/fisiologia , Sono/fisiologia
10.
Epilepsia Open ; 9(1): 409-416, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37798921

RESUMO

Low-grade epilepsy-associated tumors (LEATs) are a common cause of drug-resistant epilepsy in children. Herein, we demonstrate the feasibility of using tumor tissue derived from stereoelectroencephalography (sEEG) electrodes upon removal to molecularly characterize tumors and aid in diagnosis. An 18-year-old male with focal epilepsy and MRI suggestive of a dysembryoplastic neuroepithelial tumor (DNET) in the left posterior temporal lobe underwent implantation of seven peri-tumoral sEEG electrodes for peri-operative language mapping and demarcation of the peri-tumoral ictal zone prior to DNET resection. Using electrodes that passed through tumor tissue, we show successful isolation of tumor DNA and subsequent analysis using standard methods for tumor classification by DNA, including Glioseq targeted sequencing and DNA methylation array analysis. This study provides preliminary evidence for the feasibility of molecular diagnosis of LEATs or other lesions using a minimally invasive method with microscopic tissue volumes. The implications of sEEG electrodes in tumor characterization are broad but would aid in diagnosis and subsequent targeted therapeutic strategies.


Assuntos
Neoplasias Encefálicas , Epilepsia , Masculino , Humanos , Criança , Adolescente , Eletroencefalografia/métodos , Neoplasias Encefálicas/cirurgia , Eletrodos Implantados , DNA
11.
J Biol Chem ; 300(1): 105503, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38013090

RESUMO

Hyperthermophilic organisms thrive in extreme environments prone to high levels of DNA damage. Growth at high temperature stimulates DNA base hydrolysis resulting in apurinic/apyrimidinic (AP) sites that destabilize the genome. Organisms across all domains have evolved enzymes to recognize and repair AP sites to maintain genome stability. The hyperthermophilic archaeon Thermococcus kodakarensis encodes several enzymes to repair AP site damage including the essential AP endonuclease TK endonuclease IV. Recently, using functional genomic screening, we discovered a new family of AP lyases typified by TK0353. Here, using biochemistry, structural analysis, and genetic deletion, we have characterized the TK0353 structure and function. TK0353 lacks glycosylase activity on a variety of damaged bases and is therefore either a monofunctional AP lyase or may be a glycosylase-lyase on a yet unidentified substrate. The crystal structure of TK0353 revealed a novel fold, which does not resemble other known DNA repair enzymes. The TK0353 gene is not essential for T. kodakarensis viability presumably because of redundant base excision repair enzymes involved in AP site processing. In summary, TK0353 is a novel AP lyase unique to hyperthermophiles that provides redundant repair activity necessary for genome maintenance.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Thermococcus , Desoxirribonuclease IV (Fago T4-Induzido) , Dano ao DNA , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Thermococcus/enzimologia , Thermococcus/genética
12.
iScience ; 26(10): 107999, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37841582

RESUMO

Circadian rhythms dynamically regulate sex differences in metabolism and immunity, and circadian disruption increases the risk of metabolic disorders. We investigated the role of sex-specific intestinal microbial circadian rhythms in host metabolism using germ-free and conventionalized mice and manipulation of dietary-derived fat, fiber, and microbiota-accessible carbohydrates. Our findings demonstrate that sex differences in circadian rhythms of genes involved in immunity and metabolism depend on oscillations in microbiota, microbial metabolic functions, and microbial metabolites. Further, we show that consuming an obesogenic, high-fat, low-fiber diet produced sex-specific changes in circadian rhythms in microbiota, metabolites, and host gene expression, which were linked to sex differences in the severity of metabolic dysfunction. Our results reveal that microbial circadian rhythms contribute to sex differences in immunity and metabolism and that dietary factors can entrain new circadian rhythms and modify the magnitude of sex differences in host-microbe circadian dynamics.

13.
Stat Med ; 42(18): 3236-3258, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37265194

RESUMO

Circadian clocks are 24-h endogenous oscillators in physiological and behavioral processes. Though recent transcriptomic studies have been successful in revealing the circadian rhythmicity in gene expression, the power calculation for omics circadian analysis have not been fully explored. In this paper, we develop a statistical method, namely CircaPower, to perform power calculation for circadian pattern detection. Our theoretical framework is determined by three key factors in circadian gene detection: sample size, intrinsic effect size and sampling design. Via simulations, we systematically investigate the impact of these key factors on circadian power calculation. We not only demonstrate that CircaPower is fast and accurate, but also show its underlying cosinor model is robust against variety of violations of model assumptions. In real applications, we demonstrate the performance of CircaPower using mouse pan-tissue data and human post-mortem brain data, and illustrate how to perform circadian power calculation using mouse skeleton muscle RNA-Seq pilot as case study. Our method CircaPower has been implemented in an R package, which is made publicly available on GitHub ( https://github.com/circaPower/circaPower).


Assuntos
Ritmo Circadiano , Projetos de Pesquisa , Humanos , Animais , Camundongos , Ritmo Circadiano/genética , Perfilação da Expressão Gênica , Transcriptoma , Tamanho da Amostra
14.
Sci Rep ; 13(1): 7951, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37193733

RESUMO

N-linked glycosylation is a critical post translational modification of eukaryotic proteins. N-linked glycans are present on surface and secreted filarial proteins that play a role in host parasite interactions. Examples of glycosylated Brugia malayi proteins have been previously identified but there has not been a systematic study of the N-linked glycoproteome of this or any other filarial parasite. In this study, we applied an enhanced N-glyco FASP protocol using an engineered carbohydrate-binding protein, Fbs1, to enrich N-glycosylated peptides for analysis by LC-MS/MS. We then mapped the N-glycosites on proteins from three host stages of the parasite: adult female, adult male and microfilariae. Fbs1 enrichment of N-glycosylated peptides enhanced the identification of N-glycosites. Our data identified 582 N-linked glycoproteins with 1273 N-glycosites. Gene ontology and cell localization prediction of the identified N-glycoproteins indicated that they were mostly membrane and extracellular proteins. Comparing results from adult female worms, adult male worms, and microfilariae, we find variability in N-glycosylation at the protein level as well as at the individual N-glycosite level. These variations are highlighted in cuticle N-glycoproteins and adult worm restricted N-glycoproteins as examples of proteins at the host parasite interface that are well positioned as potential therapeutic targets or biomarkers.


Assuntos
Brugia Malayi , Animais , Humanos , Masculino , Feminino , Brugia Malayi/genética , Cromatografia Líquida , Espectrometria de Massas em Tandem , Peptídeos/metabolismo , Microfilárias/genética , Microfilárias/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Proteoma/metabolismo
15.
Front Microbiol ; 14: 1112734, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37089567

RESUMO

Although restriction-modification systems are found in both Eubacterial and Archaeal kingdoms, comparatively less is known about patterns of DNA methylation and genome defense systems in archaea. Here we report the complete closed genome sequence and methylome analysis of Methanococcus aeolicus PL15/H p , a strain of the CO2-reducing methanogenic archaeon and a commercial source for MaeI, MaeII, and MaeIII restriction endonucleases. The M. aeolicus PL15/H p genome consists of a 1.68 megabase circular chromosome predicted to contain 1,615 protein coding genes and 38 tRNAs. A combination of methylome sequencing, homology-based genome annotation, and recombinant gene expression identified five restriction-modification systems encoded by this organism, including the methyltransferase and site-specific endonuclease of MaeIII. The MaeIII restriction endonuclease was recombinantly expressed, purified and shown to have site-specific DNA cleavage activity in vitro.

16.
Clin Interv Aging ; 18: 655-666, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37101656

RESUMO

An increasingly older population is one of the major social and medical challenges we currently face. Between 2010 and 2050, it is estimated that the proportion of adults over 65 years of age will double from 8% to 16% of the global population. A major concern associated with aging is the changes in health that can lead to various diseases such as cancer and neurogenerative diseases, which are major burdens on individuals and societies. Thus, it is imperative to better understand changes in sleep and circadian rhythms that accompany aging to improve the health of an older population and target diseases associated with aging. Circadian rhythms play a role in most physiological processes and can contribute to age-related diseases. Interestingly, there is a relationship between circadian rhythms and aging. For example, many older adults have a shift in chronotype, which is an individual's natural inclination to sleep certain times of the day. As adults age, most people tend to go to sleep earlier while also waking up earlier. Numerous studies also suggest that disrupted circadian rhythms may be indicative of developing age-related diseases, like neurodegenerative disorders and cancer. Better understanding the relationship between circadian rhythms and aging may allow us to improve current treatments or develop novel ones that target diseases commonly associated with aging.


Assuntos
Doenças Neurodegenerativas , Sono , Humanos , Idoso , Sono/fisiologia , Ritmo Circadiano/fisiologia , Envelhecimento/fisiologia , Cronotipo
17.
PLoS Biol ; 21(1): e3001688, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36693045

RESUMO

Twelve-hour (12 h) ultradian rhythms are a well-known phenomenon in coastal marine organisms. While 12 h cycles are observed in human behavior and physiology, no study has measured 12 h rhythms in the human brain. Here, we identify 12 h rhythms in transcripts that either peak at sleep/wake transitions (approximately 9 AM/PM) or static times (approximately 3 PM/AM) in the dorsolateral prefrontal cortex, a region involved in cognition. Subjects with schizophrenia (SZ) lose 12 h rhythms in genes associated with the unfolded protein response and neuronal structural maintenance. Moreover, genes involved in mitochondrial function and protein translation, which normally peak at sleep/wake transitions, peak instead at static times in SZ, suggesting suboptimal timing of these essential processes.


Assuntos
Esquizofrenia , Ritmo Ultradiano , Humanos , Córtex Pré-Frontal Dorsolateral , Esquizofrenia/genética , Sono , Encéfalo , Córtex Pré-Frontal/metabolismo
18.
Commun Biol ; 6(1): 48, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639722

RESUMO

N-glycosylation is implicated in cancers and aberrant N-glycosylation is recognized as a hallmark of cancer. Here, we mapped and compared the site-specific N-glycoproteomes of colon cancer HCT116 cells and isogenic non-tumorigenic DNMT1/3b double knockout (DKO1) cells using Fbs1-GYR N-glycopeptide enrichment technology and trapped ion mobility spectrometry. Many significant changes in site-specific N-glycosylation were revealed, providing a molecular basis for further elucidation of the role of N-glycosylation in protein function. HCT116 cells display hypersialylation especially in cell surface membrane proteins. Both HCT116 and DKO1 show an abundance of paucimannose and 80% of paucimannose-rich proteins are annotated to reside in exosomes. The most striking N-glycosylation alteration was the degree of mannose-6-phosphate (M6P) modification. N-glycoproteomic analyses revealed that HCT116 displays hyper-M6P modification, which was orthogonally validated by M6P immunodetection. Significant observed differences in N-glycosylation patterns of the major M6P receptor, CI-MPR in HCT116 and DKO1 may contribute to the hyper-M6P phenotype of HCT116 cells. This comparative site-specific N-glycoproteome analysis provides a pool of potential N-glycosylation-related cancer biomarkers, but also gives insights into the M6P pathway in cancer.


Assuntos
Manosefosfatos , Neoplasias , Humanos , Glicosilação , Manosefosfatos/química , Manosefosfatos/metabolismo , Neoplasias/genética
19.
Bioinformatics ; 39(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36655766

RESUMO

SUMMARY: Circadian oscillations of gene expression regulate daily physiological processes, and their disruption is linked to many diseases. Circadian rhythms can be disrupted in a variety of ways, including differential phase, amplitude and rhythm fitness. Although many differential circadian biomarker detection methods have been proposed, a workflow for systematic detection of multifaceted differential circadian characteristics with accurate false positive control is not currently available. We propose a comprehensive and interactive pipeline to capture the multifaceted characteristics of differentially rhythmic biomarkers. Analysis outputs are accompanied by informative visualization and interactive exploration. The workflow is demonstrated in multiple case studies and is extensible to general omics applications. AVAILABILITY AND IMPLEMENTATION: R package, Shiny app and source code are available in GitHub (https://github.com/DiffCircaPipeline) and Zenodo (https://doi.org/10.5281/zenodo.7507989). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Periodicidade , Software , Fluxo de Trabalho
20.
Biol Psychiatry ; 93(2): 137-148, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36302706

RESUMO

BACKGROUND: Psychosis is a defining feature of schizophrenia and highly prevalent in bipolar disorder. Notably, individuals with these illnesses also have major disruptions in sleep and circadian rhythms, and disturbances of sleep and circadian rhythms can precipitate or exacerbate psychotic symptoms. Psychosis is associated with the striatum, though to our knowledge, no study to date has directly measured molecular rhythms and determined how they are altered in the striatum of subjects with psychosis. METHODS: We performed RNA sequencing and both differential expression and rhythmicity analyses to investigate diurnal alterations in gene expression in human postmortem striatal subregions (nucleus accumbens, caudate, and putamen) in subjects with psychosis (n = 36) relative to unaffected comparison subjects (n = 36). RESULTS: Across regions, we found differential expression of immune-related transcripts and a substantial loss of rhythmicity in core circadian clock genes in subjects with psychosis. In the nucleus accumbens, mitochondrial-related transcripts had decreased expression in subjects with psychosis, but only in those who died at night. Additionally, we found a loss of rhythmicity in small nucleolar RNAs and a gain of rhythmicity in glutamatergic signaling in the nucleus accumbens of subjects with psychosis. Between-region comparisons indicated that rhythmicity in the caudate and putamen was far more similar in subjects with psychosis than in matched comparison subjects. CONCLUSIONS: Together, these findings reveal differential and rhythmic gene expression differences across the striatum that may contribute to striatal dysfunction and psychosis in psychotic disorders.


Assuntos
Transtornos Psicóticos , Humanos , Transtornos Psicóticos/genética , Ritmo Circadiano/genética , Corpo Estriado , Putamen , Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...