Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hortic Res ; 6: 107, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31645962

RESUMO

Apples are a nutritious food source with significant amounts of polyphenols that contribute to human health and wellbeing, primarily as dietary antioxidants. Although numerous pre- and post-harvest factors can affect the composition of polyphenols in apples, genetics is presumed to play a major role because polyphenol concentration varies dramatically among apple cultivars. Here we investigated the genetic architecture of apple polyphenols by combining high performance liquid chromatography (HPLC) data with ~100,000 single nucleotide polymorphisms (SNPs) from two diverse apple populations. We found that polyphenols can vary in concentration by up to two orders of magnitude across cultivars, and that this dramatic variation was often predictable using genetic markers and frequently controlled by a small number of large effect genetic loci. Using GWAS, we identified candidate genes for the production of quercitrin, epicatechin, catechin, chlorogenic acid, 4-O-caffeoylquinic acid and procyanidins B1, B2, and C1. Our observation that a relatively simple genetic architecture underlies the dramatic variation of key polyphenols in apples suggests that breeders may be able to improve the nutritional value of apples through marker-assisted breeding or gene editing.

2.
Plant Genome ; 11(1)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29505632

RESUMO

The apple ( × Borkh.) is an economically and culturally important crop grown worldwide. Growers of this long-lived perennial must produce fruit of adequate quality while also combatting abiotic and biotic stress. Traditional apple breeding can take up to 20 yr from initial cross to commercial release, but genomics-assisted breeding can help accelerate this process. To advance genomics-assisted breeding in apple, we performed genome-wide association studies (GWAS) and genomic prediction in a collection of 172 apple accessions by linking over 55,000 single nucleotide polymorphisms (SNPs) with 10 phenotypes collected over 2 yr. Genome-wide association studies revealed several known loci for skin color, harvest date and firmness at harvest. Several significant GWAS associations were detected for resistance to a major fungal pathogen, apple scab ( [Cke.] Wint.), but we demonstrate that these hits likely represent a single ancestral source. Using genomic prediction, we show that most phenotypes are sufficiently predictable using genome-wide SNPs to be candidates for genomic selection. Finally, we detect a signal for firmness retention after storage on chromosome 10 and show that it may not stem from variation in , a gene repeatedly identified in bi-parental mapping studies and widely believed to underlie a major QTL for firmness on chromosome 10. We provide evidence that this major QTL is more likely due to variation in a neighboring ethylene response factor (ERF) gene. The present study showcases the superior mapping resolution of GWAS compared to bi-parental linkage mapping by identifying a novel candidate gene underlying a well-studied, major QTL involved in apple firmness.


Assuntos
Resistência à Doença/genética , Malus/genética , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Ascomicetos/patogenicidade , Mapeamento Cromossômico , Frutas/genética , Estudo de Associação Genômica Ampla , Malus/microbiologia , Fenótipo
3.
Hortic Res ; 3: 16043, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27651916

RESUMO

The apple (Malus×domestica Borkh.) is one of the world's most widely grown and valuable fruit crops. With demand for apples year round, storability has emerged as an important consideration for apple breeding programs. Soft scald is a cold storage-related disorder that results in sunken, darkened tissue on the fruit surface. Apple breeders are keen to generate new cultivars that do not suffer from soft scald and can thus be marketed year round. Traditional breeding approaches are protracted and labor intensive, and therefore marker-assisted selection (MAS) is a valuable tool for breeders. To advance MAS for storage disorders in apple, we used genotyping-by-sequencing (GBS) to generate high-density genetic maps in two F1 apple populations, which were then used for quantitative trait locus (QTL) mapping of soft scald. In total, 900 million DNA sequence reads were generated, but after several data filtering steps, only 2% of reads were ultimately used to create two genetic maps that included 1918 and 2818 single-nucleotide polymorphisms. Two QTL associated with soft scald were identified in one of the bi-parental populations originating from parent 11W-12-11, an advanced breeding line. This study demonstrates the utility of next-generation DNA sequencing technologies for QTL mapping in F1 populations, and provides a basis for the advancement of MAS to improve storability of apples.

4.
Am J Bot ; 101(10): 1780-90, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25326620

RESUMO

Perennial crops represent important fresh and processed food sources worldwide, but advancements in breeding perennials are often impeded due to their very nature. The perennial crops we rely on most for food take several years to reach production maturity and require large spaces to grow, which make breeding new cultivars costly compared with most annual crops. Because breeding perennials is inefficient and expensive, they are often grown in monocultures consisting of small numbers of elite cultivars that are vegetatively propagated for decades or even centuries. This practice puts many perennial crops at risk for calamity since they remain stationary in the face of evolving pest and disease pressures. Although there is tremendous genetic diversity available to them, perennial crop breeders often struggle to generate commercially successful cultivars in a timely and cost-effective manner because of the high costs of breeding. Moreover, consumers often expect the same cultivars to be available indefinitely, and there is often little or no incentive for growers and retailers to take the risk of adopting new cultivars. While genomics studies linking DNA variants to commercially important traits have been performed in diverse perennial crops, the translation of these studies into accelerated breeding of improved cultivars has been limited. Here we explain the "perennial problem" in detail and demonstrate how modern genomics tools can significantly improve the cost effectiveness of breeding perennial crops and thereby prevent crucial food sources from succumbing to the perils of perpetual propagation.


Assuntos
Agricultura/métodos , Cruzamento , Produtos Agrícolas/genética , Genoma de Planta , Genômica , Fenótipo , Seleção Genética , Produtos Agrícolas/crescimento & desenvolvimento , DNA de Plantas , Abastecimento de Alimentos , Variação Genética , Genótipo , Plantas Geneticamente Modificadas , Reprodução Assexuada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA