Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(17)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38747996

RESUMO

Ge-Sb-Te (GST) alloys are leading phase-change materials for data storage due to the fast phase transition between amorphous and crystalline states. Ongoing research aims at improving the stability of the amorphous phase to improve retention. This can be accomplished by the introduction of carbon as a dopant to Ge2Sb2Te5, which is known to alter the short- and mid-range structure of the amorphous phase and form covalently bonded C clusters, both of which hinder crystallization. The relative importance of these processes as a function of C concentration is not known. We used molecular dynamics simulation based on density functional theory to study how carbon doping affects the atomic structure of GST-C. Carbon doping results in an increase in tetrahedral coordination, especially of Ge atoms, and this is known to stabilize the amorphous phase. We observe an unexpected, non-monotonous trend in the number of tetrahedral bonded Ge with the amount of carbon doping. Our simulations show an increase in the number of tetrahedral bonded Ge up to 5 at.% C, after which the number saturates and begins to decrease above 14 at.% C. The carbon atoms aggregate into clusters, mostly in the form of chains and graphene flakes, leaving less carbon to disrupt the GST matrix at higher carbon concentrations. Different degrees of carbon clustering can explain divergent experimental results for recrystallization temperature for carbon doped GST.

2.
J Chem Phys ; 156(11): 114102, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35317568

RESUMO

Complex-concentrated-alloys (CCAs) are of interest for a range of applications due to a host of desirable properties, including high-temperature strength and tolerance to radiation damage. Their multi-principal component nature results in a vast number of possible atomic environments with the associated variability in chemistry and structure. This atomic-level variability is central to the unique properties of these alloys but makes their modeling challenging. We combine atomistic simulations using many body potentials with machine learning to develop predictive models of various atomic properties of CrFeCoNiCu-based CCAs: relaxed vacancy formation energy, atomic-level cohesive energy, pressure, and volume. A fingerprint of the local atomic environments is obtained combining invariants associated with the local atomic geometry and periodic-table information of the atoms involved. Importantly, all descriptors are based on the unrelaxed atomic structure; thus, they are computationally inexpensive to compute. This enables the incorporation of these models into macroscopic simulations. The models show good accuracy and we explore their ability to extrapolate to compositions and elements not used during training.

3.
J Chem Phys ; 149(6): 064502, 2018 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-30111141

RESUMO

Recrystallization of glasses is important in a wide range of applications including electronics and reactive materials. Molecular dynamics (MD) has been used to provide an atomic picture of this process, but prior work has neglected the thermal transport role of electrons, the dominant thermal carrier in metallic systems. We characterize the role of electronic thermal conductivity on the velocity of recrystallization in Ni using MD coupled to a continuum description of electronic thermal transport via a two-temperature model. Our simulations show that for strong enough coupling between electrons and ions, the increased thermal conductivity removes the heat from the exothermic recrystallization process more efficiently, leading to a lower effective temperature at the recrystallization front and, consequently, lower propagation velocity. We characterize how electron-phonon coupling strength and system size affect front propagation velocity. Interestingly, we find that initial recrystallization velocity increases with decreasing system size due to higher overall temperatures. Overall, we show that a more accurate description of thermal transport due to the incorporation of electrons results in better agreement with experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...