Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Differ ; 17(1): 119-33, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19713973

RESUMO

Cell death requires coordinated intracellular signalling before disassembly of cell architecture by degradative enzymes. Although the death signalling cascades that involve the mitochondria, the ER and the plasma membrane have been extensively characterized, only a handful of studies have examined the functional and structural alterations of the nuclear pore complex (NPC) during neuronal death. Here, we show that during excitotoxic neuronal degeneration calpains redistributed across the nuclear envelope and mediated the degradation of NPC components causing altered permeability of the nuclear membrane. In primary dissociated neurons, simultaneous recording of cytosolic [Ca(2+)] and localization of fluorescent proteins showed that the onset of Ca(2+) overload signalled a progressive increase in the diffusion of small reporter molecules across the nuclear envelope. Later, calpain-mediated changes in nuclear pore permeability allowed accumulation of large proteins in the nucleus. Further, in a model of excitotoxic neuronal degeneration in Caenorhabditis elegans, we found similar nuclear changes and redistribution of fluorescent probes across the nuclear membrane in dying neurons. Our findings strongly suggest that increased leakiness of the nuclear barrier affects nucleocytoplasmic transport, alters the localization of proteins across the nuclear envelope and it is likely to be involved in Ca(2+)-dependent cell death, including ischemic neuronal demise.


Assuntos
Apoptose , Cálcio/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Poro Nuclear/fisiologia , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Calpaína/metabolismo , Células Cultivadas , Ácido Glutâmico/farmacologia , Gliceraldeído 3-Fosfato Desidrogenase (NADP+)/metabolismo , Células HeLa , Humanos , Ratos , Receptores Nicotínicos/metabolismo , Transdução de Sinais
2.
Neuroscience ; 158(3): 1049-61, 2009 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-18789376

RESUMO

Extensive evidence implicates inflammation in multiple phases of stroke etiology and pathology. In particular, there is growing awareness that inflammatory events outside the brain have an important impact on stroke susceptibility and outcome. Numerous conditions, including infection and chronic non-infectious diseases, that are established risk factors for stroke are associated with an elevated systemic inflammatory profile. Recent clinical and pre-clinical studies support the concept that the systemic inflammatory status prior to and at the time of stroke is a key determinant of acute outcome and long-term prognosis. Here, we provide an overview of the impact of systemic inflammation on stroke susceptibility and outcome. We discuss potential mechanisms underlying the impact on ischemic brain injury and highlight the implications for stroke prevention, therapy and modeling.


Assuntos
Isquemia Encefálica/imunologia , Encefalite/imunologia , Infecções/imunologia , Acidente Vascular Cerebral/imunologia , Doença Aguda , Animais , Biomarcadores/metabolismo , Isquemia Encefálica/fisiopatologia , Causalidade , Encefalite/fisiopatologia , Humanos , Infecções/fisiopatologia , Arteriosclerose Intracraniana/imunologia , Arteriosclerose Intracraniana/fisiopatologia , Degeneração Neural/imunologia , Degeneração Neural/metabolismo , Degeneração Neural/fisiopatologia , Acidente Vascular Cerebral/fisiopatologia
3.
Biochem Soc Trans ; 35(Pt 5): 1163-5, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17956302

RESUMO

There is growing evidence that systemic inflammation is involved in multiple aspects of stroke aetiology and pathology. In the present review, we provide an overview of these roles and, in particular, outline recent evidence that the underlying systemic inflammatory profile can critically alter the response to ischaemic brain injury. We also highlight the need for stroke models to more adequately account for the involvement of underlying systemic inflammation.


Assuntos
Inflamação , Acidente Vascular Cerebral , Humanos , Inflamação/tratamento farmacológico , Inflamação/etiologia , Inflamação/patologia , Modelos Biológicos , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/patologia , Resultado do Tratamento
4.
Gene Ther ; 14(7): 621-5, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17235293

RESUMO

Gene therapy may be a promising approach for treatment of brain ischemia. We and others previously demonstrated that increased activity of matrix metalloproteinases (MMPs) contributes to the tissue damage that results from ischemic injury. The proteolysis of MMPs is tightly controlled by tissue inhibitors of MMPs (TIMPs). In this study, we examined whether adenoviral-mediated gene transfer of TIMP-1 and TIMP-2 could protect against neuronal damage induced by global cerebral ischemia in mice. An adenovirus expressing TIMP-1 or TIMP-2 (AdTIMP-1 or AdTIMP-2) or a control adenovirus (RAd60) or vehicle was injected into the striatum 3 days before transient global cerebral ischemia. The extent of neuronal damage was quantified 3 days post-ischemia. There was no significant difference in the extent of neuronal damage in vehicle as compared to RAd60-treated mice. In contrast, neuronal damage was reduced, by approximately 50%, after gene transfer of AdTIMP-1 (P<0.001) and AdTIMP-2 (P< 0.01) as compared to controls. This study provides the first in vivo evidence of the protective effects of TIMP-1 and TIMP-2 via gene transfer in global ischemia.


Assuntos
Adenoviridae/genética , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Ataque Isquêmico Transitório/terapia , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-2/genética , Animais , Western Blotting/métodos , Corpo Estriado/química , Corpo Estriado/metabolismo , Expressão Gênica , Vetores Genéticos/genética , Injeções , Ataque Isquêmico Transitório/metabolismo , Ataque Isquêmico Transitório/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/patologia , Neurônios/virologia , Inibidor Tecidual de Metaloproteinase-1/análise , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Inibidor Tecidual de Metaloproteinase-2/análise , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Transdução Genética/métodos , beta-Galactosidase/genética
5.
Biochem J ; 355(Pt 3): 805-17, 2001 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-11311145

RESUMO

Phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] plays a complex role in generating intracellular signalling molecules, and also in regulating actin-binding proteins, vesicular trafficking and vacuolar fusion. Four inositol polyphosphate 5-phosphatases (hereafter called 5-phosphatases) have been identified in Saccharomyces cerevisiae: Inp51p, Inp52p, Inp53p and Inp54p. Each enzyme contains a 5-phosphatase domain which hydrolyses PtdIns(4,5)P(2), forming PtdIns4P, while Inp52p and Inp53p also express a polyphosphoinositide phosphatase domain within the Sac1-like domain. Disruption of any two yeast 5-phosphatases containing a Sac1-like domain results in abnormalities in actin polymerization, plasma membrane, vacuolar morphology and bud-site selection. Triple null mutant 5-phosphatase strains are non-viable. To investigate the role of PtdIns(4,5)P(2) in mediating the phenotype of double and triple 5-phosphatase null mutant yeast, we determined whether a mammalian PtdIns(4,5)P(2) 5-phosphatase, 5-phosphatase II, which lacks polyphosphoinositide phosphatase activity, could correct the phenotype of triple 5-phosphatase null mutant yeast and restore cellular PtdIns(4,5)P(2) levels to near basal values. Mammalian 5-phosphatase II expressed under an inducible promoter corrected the growth, cell wall, vacuolar and actin polymerization defects of the triple 5-phosphatase null mutant yeast strains. Cellular PtdIns(4,5)P(2) levels in various 5-phosphatase double null mutant strains demonstrated significant accumulation (4.5-, 3- and 2-fold for Deltainp51Deltainp53, Deltainp51Deltainp52 and Deltainp52Deltainp53 double null mutants respectively), which was corrected significantly following 5-phosphatase II expression. Collectively, these studies demonstrate the functional and cellular consequences of PtdIns(4,5)P(2) accumulation and the evolutionary conservation of function between mammalian and yeast PtdIns(4,5)P(2) 5-phosphatases.


Assuntos
Fosfatidilinositóis/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Animais , Humanos , Inositol Polifosfato 5-Fosfatases , Mutação , Fenótipo , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/efeitos dos fármacos , Monoéster Fosfórico Hidrolases/genética , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento
6.
J Biol Chem ; 276(10): 7643-53, 2001 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-11116155

RESUMO

The budding yeast Saccharomyces cerevisiae has four inositol polyphosphate 5-phosphatase (5-phosphatase) genes, INP51, INP52, INP53, and INP54, all of which hydrolyze phosphatidylinositol (4,5)-bisphosphate. INP54 encodes a protein of 44 kDa which consists of a 5-phosphatase domain and a C-terminal leucine-rich tail, but lacks the N-terminal SacI domain and proline-rich region found in the other three yeast 5-phosphatases. We report that Inp54p belongs to the family of tail-anchored proteins and is localized to the endoplasmic reticulum via a C-terminal hydrophobic tail. The hydrophobic tail comprises the last 13 amino acids of the protein and is sufficient to target green fluorescent protein to the endoplasmic reticulum. Protease protection assays demonstrated that the N terminus of Inp54p is oriented toward the cytoplasm of the cell, with the C terminus of the protein also exposed to the cytosol. Null mutation of INP54 resulted in a 2-fold increase in secretion of a reporter protein, compared with wild-type yeast or cells deleted for any of the SacI domain-containing 5-phosphatases. We propose that Inp54p plays a role in regulating secretion, possibly by modulating the levels of phosphatidylinositol (4,5)-bisphosphate on the cytoplasmic surface of the endoplasmic reticulum membrane.


Assuntos
Retículo Endoplasmático/metabolismo , Monoéster Fosfórico Hidrolases/biossíntese , Sequência de Aminoácidos , Membrana Celular/metabolismo , Clonagem Molecular , Citoplasma/metabolismo , Proteínas de Fluorescência Verde , Inositol Polifosfato 5-Fosfatases , Proteínas Luminescentes/metabolismo , Microscopia Confocal , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/genética , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Fatores de Tempo , Água/metabolismo
7.
Mol Cell Biol ; 20(24): 9376-90, 2000 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11094088

RESUMO

The Saccharomyces cerevisiae inositol polyphosphate 5-phosphatases (Inp51p, Inp52p, and Inp53p) each contain an N-terminal Sac1 domain, followed by a 5-phosphatase domain and a C-terminal proline-rich domain. Disruption of any two of these 5-phosphatases results in abnormal vacuolar and plasma membrane morphology. We have cloned and characterized the Sac1-containing 5-phosphatases Inp52p and Inp53p. Purified recombinant Inp52p lacking the Sac1 domain hydrolyzed phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] and PtdIns(3, 5)P(2). Inp52p and Inp53p were expressed in yeast as N-terminal fusion proteins with green fluorescent protein (GFP). In resting cells recombinant GFP-tagged 5-phosphatases were expressed diffusely throughout the cell but were excluded from the nucleus. Following hyperosmotic stress the GFP-tagged 5-phosphatases rapidly and transiently associated with actin patches, independent of actin, in both the mother and daughter cells of budding yeast as demonstrated by colocalization with rhodamine phalloidin. Both the Sac1 domain and proline-rich domains were able to independently mediate translocation of Inp52p to actin patches, following hyperosmotic stress, while the Inp53p proline-rich domain alone was sufficient for stress-mediated localization. Overexpression of Inp52p or Inp53p, but not catalytically inactive Inp52p, which lacked PtdIns(4,5)P(2) 5-phosphatase activity, resulted in a dramatic reduction in the repolarization time of actin patches following hyperosmotic stress. We propose that the osmotic-stress-induced translocation of Inp52p and Inp53p results in the localized regulation of PtdIns(3,5)P(2) and PtdIns(4,5)P(2) at actin patches and associated plasma membrane invaginations. This may provide a mechanism for regulating actin polymerization and cell growth as an acute adaptive response to hyperosmotic stress.


Assuntos
Actinas/metabolismo , Estruturas da Membrana Celular/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Saccharomyces cerevisiae/enzimologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Clonagem Molecular , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Deleção de Genes , Genes Reporter , Inositol Polifosfato 5-Fosfatases , Toxinas Marinhas/farmacologia , Microscopia Confocal , Microscopia de Fluorescência , Pressão Osmótica , Monoéster Fosfórico Hidrolases/genética , Regiões Promotoras Genéticas/genética , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , Tiazóis/farmacologia , Tiazolidinas , Fatores de Tempo
11.
RNABC News ; 6(1): 13-4, 1974 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-4492109
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...