Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38260564

RESUMO

Crohn's disease (CD) has been traditionally viewed as a chronic inflammatory disease that cause gut wall thickening and complications, including fistulas, by mechanisms not understood. By focusing on Parabacteroides distasonis (presumed modern succinate-producing commensal probiotic), recovered from intestinal microfistulous tracts (cavernous fistulous micropathologies CavFT proposed as intermediate between 'mucosal fissures' and 'fistulas') in two patients that required surgery to remove CD-damaged ilea, we demonstrate that such isolates exert pathogenic/pathobiont roles in mouse models of CD. Our isolates are clonally-related; potentially emerging as transmissible in the community and mice; proinflammatory and adapted to the ileum of germ-free mice prone to CD-like ileitis (SAMP1/YitFc) but not healthy mice (C57BL/6J), and cytotoxic/ATP-depleting to HoxB8-immortalized bone marrow derived myeloid cells from SAMP1/YitFc mice when concurrently exposed to succinate and extracts from CavFT-derived E. coli , but not to cells from healthy mice. With unique genomic features supporting recent genetic exchange with Bacteroides fragilis -BGF539, evidence of international presence in primarily human metagenome databases, these CavFT Pdis isolates could represent to a new opportunistic Parabacteroides species, or subspecies (' cavitamuralis' ) adapted to microfistulous niches in CD.

2.
Inflamm Bowel Dis ; 29(7): 1153-1164, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-36527679

RESUMO

One of the prospective sequelae of periodontal disease (PD), chronic inflammation of the oral mucosa, is the development of inflammatory gastrointestinal (GI) disorders due to the amplification and expansion of the oral pathobionts. In addition, chronic inflammatory diseases related to the GI tract, which include inflammatory bowel disease (IBD), can lead to malignancy susceptibility in the colon of both animals and humans. Recent studies suggest that dysbiosis of the oral microbiota can alter the microbial composition in relative abundance or diversity of the distal gut, leading to the progression of digestive carcinogenesis. The link between PD and specific GI disorders is also closely associated with the migration and colonization of periodontal pathogens and the subsequent microbe-reactive T cell induction within the intestines. In this review, an in-depth examination of this relationship and the accessibility of different mouse models of IBD and PD may shed light on the current dogma. As such, oral microbiota dysbiosis involving specific bacteria, including Fusobacterium nucleatum and Porphyromonas gingivalis, can ultimately lead to gut malignancies. Further understanding the precise mechanism(s) of the oral-gut microbial axis in PD, IBD, and colorectal cancer pathogenesis will be pivotal in diagnosis, prognosis, and future treatment.


Assuntos
Gastroenteropatias , Doenças Inflamatórias Intestinais , Doenças Periodontais , Animais , Camundongos , Humanos , Disbiose/complicações , Disbiose/microbiologia , Estudos Prospectivos , Doenças Periodontais/complicações , Gastroenteropatias/etiologia , Doenças Inflamatórias Intestinais/complicações , Doenças Inflamatórias Intestinais/microbiologia , Porphyromonas gingivalis
3.
Mol Oncol ; 15(1): 195-209, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33084222

RESUMO

Small-cell lung cancer (SCLC) can be subgrouped into common 'pure' and rare 'combined' SCLC (c-SCLC). c-SCLC features a mixed tumor histology of both SCLC and non-small-cell lung cancer (NSCLC). We performed targeted exome sequencing on 90 patients with SCLC, including two with c-SCLC, and discovered RUNX1T1 amplification specific to small cell tumors of both patients with c-SCLC, but in only 2 of 88 'pure' SCLC patients. RUNX1T1 was first identified in the fusion transcript AML1/ETO, which occurs in 12%-15% of acute myelogenous leukemia (AML). We further show higher expression of RUNX1T1 in the SCLC component of another c-SCLC tumor by in situ hybridization. RUNX1T1 expression was enriched in SCLC compared with all other cancers, including NSCLC, in both cell lines and tumor specimens, as shown by mRNA level and western blotting. Transcriptomic analysis of hallmark genes decreased by stable RUNX1T1 overexpression revealed a significant change in E2F targets. Validation experiments in multiple lung cancer cell lines showed that RUNX1T1 overexpression consistently decreased CDKN1A (p21) expression and increased E2F transcriptional activity, which is commonly altered in SCLC. Chromatin immunoprecipitation (ChIP) in these overexpressing cells demonstrated that RUNX1T1 interacts with the CDKN1A (p21) promoter region, which displayed parallel reductions in histone 3 acetylation. Furthermore, reduced p21 expression could be dramatically restored by HDAC inhibition using Trichostatin A. Reanalysis of ChIP-seq data in Kasumi-1 AML cells showed that knockdown of the RUNX1T1 fusion protein was associated with increased global acetylation, including the CDKN1A (p21) promoter. Thus, our study identifies RUNX1T1 as a biomarker and potential epigenetic regulator of SCLC.


Assuntos
Epigênese Genética , Neoplasias Pulmonares/genética , Proteína 1 Parceira de Translocação de RUNX1/metabolismo , Carcinoma de Pequenas Células do Pulmão/genética , Acetilação , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Fatores de Transcrição E2F/metabolismo , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Humanos , Regiões Promotoras Genéticas , Proteína 1 Parceira de Translocação de RUNX1/genética , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...