Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Indoor Air ; 29(5): 854-864, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31127966

RESUMO

Exposure to radon gas is the second leading cause of lung cancer worldwide behind smoking. Changing the energy characteristics of a dwelling can influence both its thermal and ventilative properties, which can affect indoor air quality. This study uses radon measurements made in 470 689 UK homes between 1980 and 2015, linked to dwelling information contained within the Home Energy Efficiency Database (HEED). The linked dataset, the largest of its kind, was used to analyze the association of housing and energy performance characteristics with indoor radon concentrations in the UK. The findings show that energy efficiency measures that increase the airtightness of properties are observed to have an adverse association with indoor radon levels. Homes with double glazing installed had radon measurements with a significantly higher geometric mean, 67% (95% CI: 44, 89) greater than those without a recorded fabric retrofit. Those with loft insulation (47%, 95% CI: 26, 69) and wall insulation (32%, 95% CI: 11, 53) were also found to have higher radon readings. Improving the energy performance of the UK's housing stock is vital in meeting carbon emission reduction targets. However, compromising indoor air quality must be avoided through careful assessment and implementation practices.


Assuntos
Poluentes Radioativos do Ar/análise , Poluição do Ar em Ambientes Fechados/análise , Habitação , Radônio/análise , Bases de Dados Factuais , Monitoramento Ambiental/métodos , Humanos , Reino Unido , Ventilação
2.
Cancer Epidemiol ; 39 Suppl 1: S93-100, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26126928

RESUMO

Ionising radiation can transfer sufficient energy to ionise molecules, and this can lead to chemical changes, including DNA damage in cells. Key evidence for the carcinogenicity of ionising radiation comes from: follow-up studies of the survivors of the atomic bombings in Japan; other epidemiological studies of groups that have been exposed to radiation from medical, occupational or environmental sources; experimental animal studies; and studies of cellular responses to radiation. Considering exposure to environmental ionising radiation, inhalation of naturally occurring radon is the major source of radiation in the population - in doses orders of magnitude higher than those from nuclear power production or nuclear fallout. Indoor exposure to radon and its decay products is an important cause of lung cancer; radon may cause approximately one in ten lung cancers in Europe. Exposures to radon in buildings can be reduced via a three-step process of identifying those with potentially elevated radon levels, measuring radon levels, and reducing exposure by installation of remediation systems. In the 4th Edition of the European Code against Cancer it is therefore recommended to: "Find out if you are exposed to radiation from naturally high radon levels in your home. Take action to reduce high radon levels". Non-ionising types of radiation (those with insufficient energy to ionise molecules) - including extremely low-frequency electric and magnetic fields as well as radiofrequency electromagnetic fields - are not an established cause of cancer and are therefore not addressed in the recommendations to reduce cancer risk.


Assuntos
Guias como Assunto/normas , Neoplasias Induzidas por Radiação/etiologia , Neoplasias Induzidas por Radiação/prevenção & controle , Radiação Ionizante , Radiação não Ionizante/efeitos adversos , União Europeia , Humanos , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...