Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 201: 105898, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685256

RESUMO

The dinoflagellate Karenia brevis is a causative agent of red tides in the Gulf of Mexico and generates a potent family of structurally related brevetoxins that act via the voltage-sensitive Na+ channel. This project was undertaken to better understand the neurotoxicology and kdr cross-resistance to brevetoxins in house flies by comparing the susceptible aabys strain to ALkdr (kdr) and JPskdr (super-kdr). When injected directly into the hemocoel, larvae exhibited rigid, non-convulsive paralysis consistent with prolongation of sodium channel currents, the known mechanism of action of brevetoxins. In neurophysiological studies, the firing frequency of susceptible larval house fly central nervous system preparations showed a > 200% increase 10 min after treatment with 1 nM brevetoxin-3. This neuroexcitation is consistent with the spastic paralytic response seen after hemocoel injections. Target site mutations in the voltage-sensitive sodium channel of house flies, known to confer knockdown resistance (kdr and super-kdr) against pyrethroids, attenuated the effect of brevetoxin-3 in baseline firing frequency and toxicity assays. The rank order of sensitivity to brevetoxin-3 in both assays was aabys > ALkdr > JPskdr. At the LD50 level, resistance ratios for the knockdown resistance strains were 6.9 for the double mutant (super-kdr) and 2.3 for the single mutant (kdr). The data suggest that knockdown resistance mutations may be one mechanism by which flies survive brevetoxin-3 exposure during red tide events.


Assuntos
Moscas Domésticas , Toxinas Marinhas , Mutação , Oxocinas , Toxinas de Poliéter , Animais , Oxocinas/farmacologia , Moscas Domésticas/genética , Moscas Domésticas/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/genética , Dinoflagellida/genética , Dinoflagellida/efeitos dos fármacos
2.
Pestic Biochem Physiol ; 194: 105532, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532340

RESUMO

Inhibitors targeting the 4-hydroxyphenyl pyruvate dioxygenase (HPPD) enzyme are well established herbicides and HPPD is also a primary enzyme within the tyrosine metabolism pathway in hematophagous arthropods, which is an essential metaboilic pathway post-blood feeding to prevent tyrosine-mediated toxicity. The objective of this study was to characterize the toxicity of triketone, pyrazole, pyrazolone, isoxazole, and triazole herbicides that inhibit HPPD to blood-fed mosquitoes and ticks. Topical exposure of nitisinone to blood-fed Aedes aegypti yielded high toxicity with an LD50 of 3.81 ng/insect (95% CI: 3.09 to 4.67 ng; Hillslope: 0.97, r2: 0.99), yet was non-toxic to non-blood fed (NBF) mosquitoes. The rank order of toxicity was nitisinone > tembotrione > pyrazoxyfen > tebuconazole > mesotrione against blood-fed Ae. Aegypti, but nitisinone was approximately 30-fold more toxic than other chemicals tested. We also assessed the toxicity of HPPD-inhibiting herbicides to the lone star tick, Amblyomma americanum and similarly, nitisinone was toxic to Am. americanum with a lethal time to kill 50% of subjects (LT50) of 23 h at 10 µM. Knockdown of the gene encoding the HPPD enzyme was performed through RNA-interference led to significant mortality after blood feeding in both, Ae. aegypti and Am. americanum. Lastly, a fluorescence assay was developed to determine relative quantities of L-tyrosine in Ae. aegypti and Am. americanum treated with HPPD inhibitors. L-tyrosine levels correlated with toxicity with nitisinone exposure leading to increased tyrosine concentrations post-blood feeding. Taken together, these data support previous work suggesting HPPD-inhibitors represent a novel mode of toxicity to mosquitoes and ticks and may represent base scaffolds for development of novel insecticides specific for hematophagous arthropods.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase , Aedes , Herbicidas , Animais , Herbicidas/farmacologia , Amblyomma , Aedes/metabolismo , Tirosina/metabolismo , Inibidores Enzimáticos
3.
Pestic Biochem Physiol ; 193: 105458, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37248001

RESUMO

Mosquito-borne diseases are a significant threat to human health. The frequent and repetitive application of insecticides can result in the selection of resistant mosquito populations leading to product failures for reducing community disease transmission. It is important that new interventions are discovered and developed for reducing mosquito populations and, in turn, protecting human health. Plant essential oils are promising chemical interventions for reducing mosquito populations. The myrtle family, Myrtaceae, has numerous species to be studied as potential bioinsecticides. Here, we combined toxicological, biochemical, and neurophysiological approaches to provide evidence for cajeput oil and terpene constituents to elicit bioinsecticidal activity to pyrethroid-susceptible and -resistant Aedes aegypti. We show cajeput oil terpenes to enhance cAMP production, increase ACh levels, inhibit in vivo and in vitro AChE activity, and disrupt spike discharge frequencies of the mosquito CNS. This study presents the first report on the bioinsecticidal activity of cajeput oil terpenes to pyrethroid-susceptible and -resistant mosquitoes and provides comparative data for the octopaminergic system as a putative molecular target for the bioinsecticides with implications for resistance management.


Assuntos
Aedes , Inseticidas , Piretrinas , Animais , Humanos , Piretrinas/farmacologia , Resistência a Inseticidas , Inseticidas/farmacologia , Mosquitos Vetores
4.
Pestic Biochem Physiol ; 179: 104965, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34802515

RESUMO

The fall armyworm (FAW), Spodoptera frugiperda, is a global pest of multiple economically important row crops and the development of resistance to commercially available insecticidal classes has inhibited FAW control. Thus, there is a need to identify chemical scaffolds that can provide inspiration for the development of novel insecticides for FAW management. This study aimed to assess the sensitivity of central neurons and susceptibility of FAW to chloride channel modulators to establish a platform for repurposing existing insecticides or designing new chemicals capable of controlling FAW. Potency of select chloride channel modulators were initially studied against FAW central neuron firing rate and rank order of potency was determined to be fipronil > lindane > Z-stilbene > DIDS > GABA > E-stilbene. Toxicity bioassays identified fipronil and lindane as the two most toxic modulators studied with topical LD50's of 41 and 75 ng/mg of caterpillar, respectively. Interestingly, Z-stilbene was toxic at 300 ng/mg of caterpillar, but no toxicity was observed with DIDS or E-stilbene. The significant shift in potency between stilbene isomers indicates structure-activity relationships between stilbene chemistry and the binding site in FAW may exist. The data presented in this study defines the potency of select chloride channel modulators to FAW neural activity and survivorship to establish a platform for development of novel chemical agents to control FAW populations. Although stilbenes may hold promise for insecticide development, the low toxicity of the scaffolds tested in this study dampen enthusiasm for their development into FAW specific insecticides.


Assuntos
Inseticidas , Estilbenos , Animais , Resistência a Inseticidas , Inseticidas/toxicidade , Spodoptera , Estilbenos/toxicidade , Zea mays
5.
J Econ Entomol ; 114(6): 2485-2492, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34499738

RESUMO

We previously extracted and purified a chromene amide from Amyris texana and found this scaffold is moderately insecticidal and thus, this study aimed to test the insecticidal properties of 13 synthetically derived chromene analogs to the fall armyworm (FAW, Spodoptera frugiperda). Microinjection of chromenes with alcohol or aldehydes substitutions at the meta position on the benzopyran moiety led to moderate toxicity that was approximately 2- to 3-fold less toxic when compared to permethrin, yet microinjection of differently substituted chromenes exhibited little to no toxicity. Similarly, chromenes with alcohol or aldehydes substitutions at the meta position on the benzopyran moiety were among the most toxic chromenes studied through ingested exposure. In addition to acute toxicity, select chromenes significantly increased the percentage of developmental defects upon eclosion that prevented adult moths from being capable of flight, suggesting these compounds alter development. Interestingly, microinjection yielded differing signs of intoxication between alcohol and aldehyde substitutions where the alcohol resulted in flaccid paralysis and lethargy whereas aldehyde led to tonic contractions and hyperactivity. These contrasting signs of intoxication were also observed in electrophysiological assays where alcohol substitutions led to the depression of central neuron firing activity and aldehyde substitutions led to hyperexcitation of central neurons. In summary, the chromene amides led to acute lethality and/or altered developmental trajectories of FAW, yet the high doses required for acute mortality suggest these scaffolds hold relatively little promise for development into FAW-directed insecticides but may represent novel growth regulators for FAW.


Assuntos
Benzopiranos , Produtos Biológicos , Resistência a Inseticidas , Inseticidas , Spodoptera , Animais , Larva , Rutaceae/química
6.
Pestic Biochem Physiol ; 169: 104652, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32828370

RESUMO

Neurophysiological recordings were employed to quantify neuronal sensitivity to neurotoxic insecticides and assessed toxicity across field and laboratory fall armyworm (FAW) populations. Topical toxicity resistance ratios (RR) in field-collected FAW was 767-fold compared to laboratory strains and, importantly, a 1750-fold reduction in potency was observed for λ-cyhalothrin in neurophysiological assays. Field collected FAW were found to have a RR of 12 to chlorpyrifos when compared to the susceptible strain and was 8-fold less sensitive in neurophysiological assays. Surprisingly, there were no point mutations identified in the voltage-gated sodium channel known to cause pyrethroid resistance. For acetylcholinesterase, FAW had more than 80% of their nucleotide sequences consistent with A201 and F290 of the susceptible strains although 60% of the tested population was heterozygous for the G227A mutation. These data indicate that point mutations did not contribute to the high level of pyrethroid resistance and nerve insensitivity in this population of field collected FAW. Additionally, these data suggest the kdr phenotype only explains a portion of the heritable variation in FAW resistance and indicates kdr is not the only predictor of high pyrethroid resistance. Phenotypic assays, such as toxicity bioassays or neurophysiological recordings, using field-collected populations are necessary to reliably predict resistant phenotypes and product failures.


Assuntos
Inseticidas/farmacologia , Piretrinas , Animais , Resistência a Inseticidas/efeitos dos fármacos , Mutação , Spodoptera/efeitos dos fármacos
7.
Sci Rep ; 9(1): 19551, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31862982

RESUMO

Resistance mechanisms to synthetic insecticides often include point mutations and increased expression of genes encoding detoxification enzymes. Since pyrethroids are the main adulticides used against Aedes aegypti, which vectors pathogens such as Zika virus, understanding resistance to this insecticide class is of significant relevance. We focused on adenosine triphosphate (ATP)-binding cassette (ABC) transporters in the pyrethroid-resistant Puerto Rico (PR) strain of Ae. aegypti. We investigated the expression patterns of six ABC transporters previously characterized as differentially expressed in insecticide-challenged mosquitoes, or increased mRNA expression in pyrethroid-resistant Ae. aegypti, by comparing PR to the Rockefeller (Rock) susceptible strain. No constitutive differential expression between strains was detected, but expression differences for these genes was influenced by sex and age, suggesting that their role is independent from resistance in PR. Instead, ABC transporters may be induced after insecticide exposure. Challenging mosquitoes with deltamethrin, with or without ABC transporter modulators, showed that Rock and PR responded differently, but a contribution of ABC transporters to deltamethrin toxicity is suspected. Moreover, the effect of dexamethasone, which enhanced the inhibition of nerve firing by deltamethrin, was observed using a Drosophila central nervous system preparation, showing synergy of these two compounds through the potential inhibition of ABC transporters.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Aedes/efeitos dos fármacos , Piretrinas/farmacologia , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Feminino , Resistência a Inseticidas , Inseticidas/farmacologia , Masculino , Nitrilas/farmacologia , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...