Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1388489, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855768

RESUMO

Little is known about shifts in the fecal microbiome of dairy calves preceding and following the incidence of gastrointestinal disease. The objective of this cohort study was to describe the fecal microbiome of preweaned dairy calves before, during, and after gastrointestinal disease. A total of 111 Holstein dairy calves were enrolled on 2 dairies (D1 and D2) and followed until 5 weeks old. Health assessments were performed weekly and fecal samples were collected every other week. Of the 111 calves, 12 calves from D1 and 12 calves from D2 were retrospectively defined as healthy, and 7 calves from D1 and 11 calves from D2 were defined as diarrheic. Samples from these calves were sequenced targeting the 16S rRNA gene and compared based on health status within age groups and farms: healthy (0-1 week old) vs. pre-diarrheic (0-1 week old), healthy (2-3 weeks old) vs. diarrheic (2-3 weeks old), and healthy (4-5 weeks old) vs. post-diarrheic (4-5 weeks old) calves. Healthy and diarrheic samples clustered together based on age rather than health status on both farms. Based on linear discriminant analysis, a few species were identified to be differently enriched when comparing health status within age groups and farm. Among them, Bifidobacterium sp. was differently enriched in pre-diarrheic calves at D1 (0-1 week old) whereas healthy calves of the same age group and farm showed a higher abundance of Escherichia coli. Bifidobacterium sp. was identified as a biomarker of fecal samples from healthy calves (2-3 weeks old) on D1 when compared with diarrheic calves of the same age group and farm. Feces from diarrheic calves on D2 (2-3 weeks old) were characterized by taxa from Peptostreptococcus and Anaerovibrio genera whereas fecal samples of age-matched healthy calves were characterized by Collinsella aerofaciens and Bifidobacterium longum. After resolution of uncomplicated diarrhea (4-5 weeks old), Collinsella aerofaciens was more abundant in D2 calves whereas Bacteriodes uniformis was more abundant in D1 calves. Taken together, these findings suggest that the age of the preweaned calf is the major driver of changes to fecal microbiome composition and diversity even in the face of uncomplicated gastrointestinal disease.

2.
Sci Rep ; 14(1): 11479, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769412

RESUMO

Salmonella enterica serovar Dublin (S. Dublin) is an important enteric pathogen affecting cattle and poses increasing public health risks. Understanding the pathophysiology and host-pathogen interactions of S. Dublin infection are critical for developing effective control strategies, yet studies are hindered by the lack of physiologically relevant in vitro models. This study aimed to generate a robust ileal monolayer derived from adult bovine organoids, validate its feasibility as an in vitro infection model with S. Dublin, and evaluate the epithelial response to infection. A stable, confluent monolayer with a functional epithelial barrier was established under optimized culture conditions. The model's applicability for studying S. Dublin infection was confirmed by documenting intracellular bacterial invasion and replication, impacts on epithelial integrity, and a specific inflammatory response, providing insights into the pathogen-epithelium interactions. The study underscores the utility of organoid-derived monolayers in advancing our understanding of enteric infections in livestock and highlights implications for therapeutic strategy development and preventive measures, with potential applications extending to both veterinary and human medicine. The established bovine ileal monolayer offers a novel and physiologically relevant in vitro platform for investigating enteric pathogen-host interactions, particularly for pathogens like S. Dublin.


Assuntos
Interações Hospedeiro-Patógeno , Íleo , Organoides , Salmonelose Animal , Animais , Bovinos , Organoides/microbiologia , Íleo/microbiologia , Íleo/patologia , Salmonelose Animal/microbiologia , Salmonella enterica/patogenicidade , Salmonella enterica/fisiologia , Inflamação/microbiologia , Inflamação/patologia , Mucosa Intestinal/microbiologia , Doenças dos Bovinos/microbiologia
3.
PLoS One ; 18(5): e0285876, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37192182

RESUMO

Bovine respiratory disease (BRD) is a leading cause of calf morbidity and mortality, and prevalence remains high despite current management practices. Differential gene expression (DGE) provides detailed insight into individual immune responses and can illuminate enriched pathways and biomarkers that contribute to disease susceptibility and outcomes. The aims of this study were to investigate differences in peripheral leukocyte gene expression in Holstein preweaned heifer calves 1) with and without BRD, and 2) across weeks of age. Calves were enrolled for this short-term longitudinal study on two commercial dairies in Washington State. Calves were assessed every two weeks throughout the pre-weaning period using clinical respiratory scoring (CRS) and thoracic ultrasonography (TUS), and blood samples were collected. Calves were selected that were either healthy (n = 10) or had BRD diagnosed by CRS (n = 7), TUS (n = 6), or both (n = 6) in weeks 5 or 7 of life). Three consecutive time point samples were analyzed for each BRD calf consisting of PRE, ONSET, and POST samples. Nineteen genes of interest were selected based on previous gene expression studies in cattle: ALOX15, BPI, CATHL6, CXCL8, DHX58, GZMB, HPGD, IFNG, IL17D, IL1R2, ISG15, LCN2, LIF, MX1, OAS2, PGLYRP1, S100A8, SELP, and TNF. Comparisons were made between age and disease time point matched BRD and healthy calves as well as between calf weeks of age. No DGE was observed between diseased and healthy calves; however, DGE was observed between calf weeks of age regardless of disease state. Developmental differences in leukocyte gene expression, phenotype, and functionality make pre-weaned calves immunologically distinct from mature cattle, and early life shifts in calf leukocyte populations likely contribute to the age-related gene expression differences we observed. Age overshadows disease impacts to influence gene expression in young calves, and immune development progresses upon a common trajectory regardless of disease during the preweaning period.


Assuntos
Doenças dos Bovinos , Transtornos Respiratórios , Doenças Respiratórias , Animais , Bovinos , Feminino , Estudos Longitudinais , Desmame , Indústria de Laticínios , Doenças dos Bovinos/epidemiologia , Doenças Respiratórias/epidemiologia , Expressão Gênica
4.
J Vet Diagn Invest ; 35(2): 182-186, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36772787

RESUMO

Postmortem bacterial culture is controversial in human medicine, and veterinary-specific research in this area is lacking. To address this knowledge gap, we cultured liver, kidney, and spleen individually from on-farm calf mortalities to determine the number of bacterial species present, concordance between organ cultures, and agreement with gross and histologic findings. We hypothesized that the spleen, a filtering organ, would be the most useful organ with the least amount of postmortem contamination given that it does not have a direct conduit to a bacterial population. Fresh liver, kidney, and spleen were collected for culture from 30 calves 5-28-d-old with various causes of mortality. Bacterial growth of ≥2 species was observed in ~48% of cultures, with Escherichia coli and Streptococcus spp. being most frequent. One bacterial species was present in 20% of cultures, with E. coli predominating. No growth was observed in ~32% of cultures. In 43% of cases, there was agreement in the culture results for all 3 organs; however, the majority were mixed bacterial growth. The best agreement was observed when there were no gross and/or histologic septic lesions in target organs and no bacterial growth on culture. The spleen was not helpful in determining bacterial significance in comparison to kidney or liver.


Assuntos
Escherichia coli , Baço , Humanos , Animais , Bovinos , Autopsia/veterinária , Baço/patologia , Rim/patologia , Fígado/patologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-38873240

RESUMO

Recent progress in bovine intestinal organoid research has expanded opportunities for creating improved in vitro models to study intestinal physiology and pathology. However, the establishment of a culture condition capable of generating organoids from all segments of the cattle intestine has remained elusive. Although previous research has described the development of bovine jejunal, ileal, and colonic organoids, this study marks the first report of successful bovine duodenal and rectal organoid development. Maintenance of these organoids through serial passages and cryopreservation was achieved, with higher success rates observed in large intestinal organoids compared to their small intestinal counterparts. A novel approach involving the use of biopsy forceps during initial tissue sampling streamlined the subsequent tissue processing, simplifying the procedure compared to previously established protocols in cattle. Additionally, our study introduced a more cost-effective culture medium based on Advanced DMEM/F12, diverging from frequently used commercially available organoid culture media. This enhancement improves accessibility to organoid technology by reducing culture costs. Crucially, the derived organoids from jejunum, ileum, colon and rectum faithfully preserved the structural, cellular, and genetic characteristics of in vivo intestinal tissue. This research underscores the significant potential of adult bovine intestinal organoids as a physiologically and morphologically relevant in vitro model. Such organoids provide a renewable and sustainable resource for a broad spectrum of studies, encompassing investigations into normal intestinal physiology in cattle and the intricate host-pathogen interactions of clinically and economically significant enteric pathogens.

6.
PLoS One ; 17(10): e0276638, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36269743

RESUMO

Gastrointestinal disease (GI) is the most common illness in pre-weaned dairy calves. Therefore, effective strategies to manipulate the microbiome of dairy calves under commercial dairy operations are of great importance to improve animal health and reduce antimicrobial usage. The objective of this study was to develop a farm-specific FMT product and to investigate its effects on clinical outcomes and fecal microbial composition of dairy calves. The FMT product was derived from feces from healthy donors (5-24 days of age) raised in the same calf ranch facility as the FMT recipients. Healthy and diarrheic calves were randomly enrolled to a control (n = 115) or FMT (n = 112) treatment group (~36 g of processed fecal matter once daily for 3 days). Fecal samples were collected at enrollment and again 9 days later after the first FMT dose. Although the FMT product was rich in organisms typically known for their beneficial probiotic properties, the FMT therapy did not prevent or ameliorate GI disease in dairy calves. In fact, calves that received FMT were less likely to recover from GI disease, and more likely to die due to GI disease complications. Fecal microbial community analysis revealed an increase in the alpha-diversity in FMT calves; however, no major differences across treatment groups were observed in the beta-diversity analysis. Calves that received FMT had higher relative abundance of an uncultured organism of the genus Lactobacillus and Lactobacillus reuteri on day 10. Moreover, FMT calves had lower relative abundance of Clostridium nexile and Bacteroides vulgatus on day 10. Our results indicate the need to have an established protocol when developing FMT products, based on rigorous inclusion and exclusion criteria for the selection of FMT donors free of potential pathogens, no history of disease or antibiotic treatment.


Assuntos
Transplante de Microbiota Fecal , Microbiota , Bovinos , Animais , Fazendas , Transplante de Microbiota Fecal/métodos , Fezes , Antibacterianos
7.
PLoS One ; 17(1): e0262317, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34982792

RESUMO

Gastrointestinal disease (GI) is the most common illness in pre-weaned dairy calves. Studies have associated the fecal microbiome composition with health status, but it remains unclear how the microbiome changes across different levels of GI disease and breeds. Our objective was to associate the clinical symptoms of GI disease with the fecal microbiome. Fecal samples were collected from calves (n = 167) of different breeds (Holstein, Jersey, Jersey-cross and beef-cross) from 4-21 d of age. Daily clinical evaluations assessed health status. Calves with loose or watery feces were diagnosed with diarrhea and classified as bright-sick (BS) or depressed-sick (DS) according to behavior. Calves with normal or semiformed feces and no clinical illness were classified as healthy (H). One hundred and three fecal samples were obtained from consistently healthy calves and 64 samples were from calves with diarrhea (n = 39 BS; n = 25 DS). The V3-V4 region of 16S rRNA gene was sequenced and analyzed. Differences were identified by a linear-mixed effects model with a negative binomial error. DS and Jersey calves had a higher relative abundance of Streptococcus gallolyticus relative to H Holstein calves. In addition, DS calves had a lower relative abundance of Bifidobacterium longum and an enrichment of Escherichia coli. Species of the genus Lactobacillus, such as an unclassified Lactobacillus, Lactobacillus reuteri, and Lactobacillus salivarius were enriched in calves with GI disease. Moreover, we created a model to predict GI disease based on the fecal microbiome composition. The presence of Eggerthella lenta, Bifidobacterium longum, and Collinsella aerofaciens were associated with a healthy clinical outcome. Although lactobacilli are often associated with beneficial probiotic properties, the presence of E. coli and Lactobacillus species had the highest coefficients positively associated with GI disease prediction. Our results indicate that there are differences in the fecal microbiome of calves associated with GI disease severity and breed specificities.


Assuntos
Bactérias/isolamento & purificação , Infecções Bacterianas/complicações , Doenças dos Bovinos/patologia , Fezes/microbiologia , Gastroenteropatias/patologia , Gastroenteropatias/veterinária , Animais , Animais Recém-Nascidos , Bactérias/classificação , Bactérias/patogenicidade , Infecções Bacterianas/microbiologia , Bovinos , Doenças dos Bovinos/microbiologia , Gastroenteropatias/microbiologia
8.
Environ Res ; 207: 112197, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34699758

RESUMO

Exposure to air pollution, including criteria pollutants such as fine particulate matter (PM2.5) and ozone (O3), has been associated with morbidity and mortality in mammals. As a genetically homogenous population that is closely monitored for health, dairy cattle present a unique opportunity to assess the association between changes in air pollution and mammalian health. Milk yield decreases in the summer if temperature and humidity, measured by the Temperature Humidity Index (THI). As O3 levels increase with warmer temperatures, and summer PM2.5 may increase with wildfire smoke, dairy cows may serve as a useful sentinel species to evaluate subacute markers of inflammation and metabolic output and ambient pollution. Over two years, we assessed summertime O3 and PM2.5 concentrations from local US EPA air quality monitors into an auto-regressive mixed model of the association between THI and daily milk production data and bulk tank somatic cell count (SCC). In unadjusted models, a 10 unit increase THI was associated with 28,700 cells/mL (95% CI: 17,700, 39,690) increase in SCC. After controlling for ambient air pollutants, THI was associated with a 14,500 SCC increase (95% CI: 3,400, 25,680), a 48% decrease in effect compared to the crude model. Further, in fully adjusted models, PM2.5 was associated with a 105,500 cells/mL (95% CI: 90,030, 121,050) increase in SCC. Similar results were found for milk production. Results were amplified when high PM2.5 days (95th percentile of observed values) associated with wildfire smoke were removed from the analyses. Our results support the hypothesis that PM2.5 confounds the relationships between THI and milk yield and somatic cell count. The results of this study can be used to inform strategies for intervention to mitigate these impacts at the dairy level and potentially contribute to a model where production animals can act as air quality sentinels.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Animais , Canários , Bovinos , Contagem de Células/veterinária , Feminino , Mamíferos , Leite/química , Material Particulado/análise , Material Particulado/toxicidade
9.
Front Vet Sci ; 8: 637271, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33869318

RESUMO

There is evidence that neonatal calves are over treated with antimicrobials that may disrupt colonization of their gastrointestinal tract (GIT) microbiota. The study objectives were to assess the decision-making process of antimicrobial use on a commercial dairy and impacts of parenteral antibiotics on dairy calves' GIT Bifidobacterium and calf health. Unhealthy pre-weaned dairy calves were enrolled based on farm personnel identification with age-matched healthy calves. Half the calves in each group were treated with a 3-day course of IM ampicillin and half were given supportive therapy as needed. Health scores (appetite, fecal consistency, attitude, and temperature) were recorded twice daily throughout the study. Because of inconsistency in employee health decisions, the 121 enrolled calves were reassessed using objective clinical observations plus fecal dry matter and placed into 1 of 3 health categories: healthy, uncomplicated diarrhea (bright attitude and good appetite but with diarrhea), and sick. Accounting for treatment group allocation, this resulted in six post-enrollment health and treatment categories. Calves were followed daily for 14 days post-enrollment and fecal samples collected at 6 time points and Bifidobacterium was quantified from these samples using quantitative PCR. The objective criteria for disease definition reclassified many "unhealthy" calves as uncomplicated diarrhea. Including all calves, on average, the quantity of Bifidobacterium decreased from the day of enrollment (median 8 days of age) across time to 14 days post-enrollment. Calves given an antibiotic the day of enrollment had a greater decrease in Bifidobacterium 4 and 9 days later relative to enrollment Bifidobacterium compared to untreated calves. At enrollment, sick calves and those categorized as uncomplicated diarrhea were more likely to have low Bifidobacterium counts and less likely to be categorized as healthy following antimicrobial treatment. Our results indicate that relying on farm personnel to identify morbidity may lead to some clinical misclassification. There was no indication that antimicrobials affected subsequent health outcomes, but antimicrobials did impact Bifidobacterium dynamics. These results highlight the importance and difficulty in assigning appropriate illness classification on farms and point to a need to develop better point of care diagnostics that improve calf husbandry and stewardship of antimicrobials.

10.
J Am Vet Med Assoc ; 258(5): 515-526, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33620236

RESUMO

OBJECTIVE: To explore veterinarians' perceptions and veterinary experts' opinions regarding antimicrobial stewardship (AMS) on dairy farms in the western United States. SAMPLE: 20 dairy veterinarians and 9 AMS experts. PROCEDURES: 3 focus group discussions involving 20 dairy veterinarians from California, Idaho, and Washington and an expert opinion study involving 9 North American AMS experts were conducted. During focus group discussions, participants were asked open-ended questions regarding implementation of AMS programs on dairy farms. Discussions were recorded and transcribed for thematic analysis. An asynchronous nominal group process was used for the expert opinion study. Participants were asked to complete a series of 3 online surveys consisting of open-ended questions. Expert opinion data underwent thematic analysis and were compared with results obtained from focus group discussions. RESULTS: Veterinarian-perceived barriers to implementation of AMS on dairy farms included variable relationships with clients and farm employees, ensuring AMS provided value to the farm, and uncertainty about regulations for monitoring on-farm antimicrobial use (AMU). Veterinarians were willing to accept additional responsibility for AMU provided that protocols were adopted to ensure them more complete control of on-farm AMU and they were compensated. The AMS experts indicated that effective implementation of AMS on dairy farms requires producer buy-in and tools to facilitate treatment protocol development and monitoring. CONCLUSIONS AND CLINICAL RELEVANCE: Additional veterinary oversight of AMU on dairy farms will require engagement by both veterinarians and producers and practical value-added methods for AMS. Continuing education programs should address treatment protocol development, AMU monitoring strategies, and employee training.


Assuntos
Gestão de Antimicrobianos , Médicos Veterinários , Animais , Indústria de Laticínios , Prova Pericial , Fazendas , Humanos , Idaho , Percepção , Estados Unidos , Washington
11.
J Agromedicine ; 26(2): 151-161, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32052708

RESUMO

Objectives: Zoonotic pathogens on dairy farms are a known risk for people who work and live there. Exposure and/or transmission of Salmonella serovars, E. coli (O157; H7), Campylobacter jejuni, and Cryptosporidium parvum have been documented to occur in the dairy farm environment. Social ecological factors have been identified as determinants of preventive behaviors of people at risk of infectious diseases.Methods: This study described the effect of socio-ecological factors on selected zoonotic bacterial and protozoal diseases in 42 workers of two dairy farms.Results: Occupational exposure to Salmonella ser. Dublin, E. coli, and Campylobacter spp. was confirmed. Self-efficacy and negative workplace perceptions were risk factors for Salmonella Dublin exposure (OR = 1.43[95% CI 1.11-2.22] & 1.22 [95% CI 1.02-1.53] respectively,). Additionally, safety knowledge and risk perceptions were protective factors of exposure (OR = 0.90 [95% CI 0.79-1.00]). Positive perceptions of supervisors and coworkers was a protective factor of Campylobacter exposure (OR = 0.89 [95% CI 0.79-0.98]).Conclusion: Results indicated that the presence of a supporting organizational environment, good communication with supervisors and coworkers, and training on prevention of zoonotic diseases would potentially reduce occupational exposures to zoonotic diseases on these farms.


Assuntos
Criptosporidiose , Cryptosporidium , Animais , Colorado , Escherichia coli , Humanos , Zoonoses/epidemiologia
12.
Front Vet Sci ; 7: 559279, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195534

RESUMO

Specifically designed gene expression studies can be used to prioritize candidate genes and identify novel biomarkers affecting resilience against mastitis and other diseases in dairy cattle. The primary goal of this study was to assess whether specific peripheral leukocyte genes expressed differentially in a previous study of dairy cattle with postpartum disease, also would be expressed differentially in peripheral leukocytes from a diverse set of different dairy cattle with moderate to severe clinical mastitis. Four genes were selected for this study due to their differential expression in a previous transcriptomic analysis of circulating leukocytes from dairy cows with and without evidence of early postpartum disease. An additional 15 genes were included based on their cellular, immunologic, and inflammatory functions associated with resistance and tolerance to mastitis. This fixed cohort study was conducted on a conventional dairy in Washington state. Cows >50 days in milk (DIM) with mastitis (n = 12) were enrolled along with healthy cows (n = 8) selected to match the DIM and lactation numbers of mastitic cows. Blood was collected for a complete blood count (CBC), serum biochemistry, leukocyte isolation, and RNA extraction on the day of enrollment and twice more at 6 to 8-days intervals. Latent class analysis was performed to discriminate healthy vs. mastitic cows and to describe disease resolution. RNA samples were processed by the Primate Diagnostic Services Laboratory (University of Washington, Seattle, WA). Gene expression analysis was performed using the Nanostring System (Nanostring Technologies, Seattle, Washington, USA). Of the four genes (C5AR1, CATHL6, LCN2, and PGLYRP1) with evidence of upregulation in cows with mastitis, three of those genes (CATHL6, LCN2, and PGLYRP1) were investigated due to their previously identified association with postpartum disease. These genes are responsible for immunomodulatory molecules that selectively enhance or alter host innate immune defense mechanisms and modulate pathogen-induced inflammatory responses. Although further research is warranted to explain their functional mechanisms and bioactivity in cattle, our findings suggest that these conserved elements of innate immunity have the potential to bridge disease states and target tissues in diverse dairy populations.

13.
Front Vet Sci ; 7: 564290, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195539

RESUMO

Modeling realistic human decision-making is an important feature of good policy design processes. The use of an agent-based modeling framework allows for quantitative human decision-models that assume fully rational agents. This research introduces a dynamic human decision-making sub-model. The parameterisation of human memory and "rationality" in a decision-making model represents an important extension of decision-making in ABMs. A data driven model of herd movement within a dynamic natural environment is the context for evaluating the cognitive decision-making model. The natural and human environments are linked via memory and rationality that affect herdsmen decision-making to vaccinate cattle using a once-for-life vaccine (Rift Valley fever) and an annual booster vaccine (Contagious Bovine Pleuropneumonia). The simulation model uses environmental data from Samburu county, Kenya from 2004 to 2015. The cognitive parameters of memory and "rationality" are shown to successfully differentiate between vaccination decisions that are characterized by annual and once-for-life choices. The preliminary specifications and findings from the dynamic cognition-pastoralist agent-based model (PastoralScape) indicate that the model offers much to livestock vaccination modeling among small-scale herders.

14.
Ir Vet J ; 71: 7, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29507715

RESUMO

BACKGROUND: There is an increasing push for dairy production to be scientifically grounded and ethically responsible in the oversight of animal health and well-being. Addressing underlying challenges affecting the quality and length of productive life necessitates novel assessment and accountability metrics. Human medical epidemiologists developed the Disability-Adjusted Life Year metric as a summary measure of health addressing the complementary nature of disease and death. The goal of this project was to develop and implement a dairy Disease-Adjusted Lactation (DALact) summary measure of health, as a comparison against cumulative disease frequency. METHODS: A total of 5694 cows were enrolled at freshening from January 1st, 2014 through May 26th, 2015 on 3 similarly managed U.S. Midwestern Plains' region dairies. Eleven health categories of interest were tracked from enrollment until culling, death, or the study's completion date. The DALact accounted for the days of life lost due to illness, forced removal, and death relative to the average lactation length across the participating farms. RESULTS: The DALact consistently identified mastitis as the primary disease of concern on all 3 dairies (19,007-23,955 days lost). Secondary issues included musculoskeletal injuries (19,559 days), pneumonia (11,034 days), or lameness (8858 days). By comparison, cumulative frequency measures pointed to mastitis (31-50%) and lameness (25-54%) as the 2 most frequent diseases. Notably, the DALact provided a robust accounting of health events such as musculoskeletal injuries (5010-19,559 days) and calving trauma (2952-5868 days) otherwise overlooked by frequency measures (0-3%). CONCLUSIONS: The DALact provides a time-based method for assessing the overall burden of disease on dairies. It is important to emphasize that a summary measure of dairy health goes beyond simply linking morbidity to culling and mortality in a standardized fashion. A summary measure speaks to the burden of disease on both the well-being and productivity of individuals and populations. When framed as lost days, years, or lactations the various health issues on a farm are more comprehensible than they may be by frequency measures alone. Such an alternative accounting of disease highlights the lost opportunity costs of production as well as the burden of disease on life as a whole.

15.
Prev Vet Med ; 143: 1-10, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28622786

RESUMO

Over the past 175 years, data related to human disease and death have progressed to a summary measure of population health, the Disability-Adjusted Life Year (DALY). As dairies have intensified there has been no equivalent measure of the impact of disease on the productive life and well-being of animals. The development of a disease-adjusted metric requires a consistent set of disability weights that reflect the relative severity of important diseases. The objective of this study was to use an international survey of dairy authorities to derive disability weights for primary disease categories recorded on dairies. National and international dairy health and management authorities were contacted through professional organizations, dairy industry publications and conferences, and industry contacts. Estimates of minimum, most likely, and maximum disability weights were derived for 12 common dairy cow diseases. Survey participants were asked to estimate the impact of each disease on overall health and milk production. Diseases were classified from 1 (minimal adverse effects) to 10 (death). The data was modelled using BetaPERT distributions to demonstrate the variation in these dynamic disease processes, and to identify the most likely aggregated disability weights for each disease classification. A single disability weight was assigned to each disease using the average of the combined medians for the minimum, most likely, and maximum severity scores. A total of 96 respondents provided estimates of disability weights. The final disability weight values resulted in the following order from least to most severe: retained placenta, diarrhea, ketosis, metritis, mastitis, milk fever, lame (hoof only), calving trauma, left displaced abomasum, pneumonia, musculoskeletal injury (leg, hip, back), and right displaced abomasum. The peaks of the probability density functions indicated that for certain disease states such as retained placenta there was a relatively narrow range of expected impact whereas other diseases elicited a wider breadth of impact. This was particularly apparent with respect to calving trauma, lameness and musculoskeletal injury, all of which could be redefined using gradients of severity or accounting for sequelae. These disability weight distributions serve as an initial step in the development of the disease-adjusted lactation (DALact) metric. They will be used to assess the time lost due to dynamic phases of dairy cow diseases and injuries. Prioritizing health interventions based on time expands the discussion of animal health to view profits and losses in light of the quality and length of life.


Assuntos
Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/patologia , Anos de Vida Ajustados por Qualidade de Vida , Abomaso/anormalidades , Abomaso/patologia , Animais , Bovinos , Indústria de Laticínios , Feminino , Cetose/epidemiologia , Cetose/veterinária , Mastite Bovina/epidemiologia , Placenta Retida/epidemiologia , Placenta Retida/veterinária , Gravidez
16.
J Food Prot ; 79(3): 484-7, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26939660

RESUMO

Escherichia coli O157 (EcO157) infections can lead to serious disease and death in humans. Although the ecology of EcO157 is complex, ruminant animals serve as an important reservoir for human infection. Dairy cattle are unique because they may be a source of contamination for milk, meat, and manure-fertilized crops. Foodborne dairy pathogens such as EcO157 are of primary importance to public health. Antimicrobial resistance (AMR) is a complex phenomenon that complicates the treatment of serious bacterial infections and is of increasing concern. In the face of recommended use restrictions for antimicrobial agents in livestock operations, current AMR patterns in known foodborne pathogens should be documented. The objective of this study was to document AMR patterns in EcO157 isolates from dairies in northern Colorado using antimicrobial agents commonly found on dairies and representative of medically important antimicrobial drug classes. Seventy-five EcO157 isolates were recovered from three dairies. Six isolates were resistant to at least 1 of the 10 tested antimicrobial agents: four were resistant to streptomycin, sulfisoxazole, and tetracycline; one was resistant to streptomycin and tetracycline; and one was resistant to only tetracycline. All resistant isolates were from a single dairy. Overall, a low prevalence (8%) of AMR was observed among the 75 EcO157 isolates. No significant effects on AMR profiles due to virulence genes, parity, or previous antimicrobial treatments within the current lactation period were detected. The results of this study provide background information for future comparative studies investigating AMR trends. Future studies should include more participating farms and more samples and should control for potential confounding factors of AMR that may underlie individual farm variation.


Assuntos
Farmacorresistência Bacteriana Múltipla , Escherichia coli O157/efeitos dos fármacos , Escherichia coli O157/isolamento & purificação , Animais , Antibacterianos/farmacologia , Bovinos , Cefalosporinas/farmacologia , Colorado , Indústria de Laticínios , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/veterinária , Fluoroquinolonas/farmacologia , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Testes de Sensibilidade Microbiana/veterinária , Leite/microbiologia , Penicilinas/farmacologia , Carne Vermelha/microbiologia , Sulfonamidas/farmacologia , Tetraciclinas/farmacologia , Combinação Trimetoprima e Sulfametoxazol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...