Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Alzheimers Dement ; 20(1): 301-315, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37610059

RESUMO

INTRODUCTION: Memory-associated neural circuits produce oscillatory events including theta bursts (TBs), sleep spindles (SPs), and slow waves (SWs) in sleep electroencephalography (EEG). Changes in the "coupling" of these events may indicate early Alzheimer's disease (AD) pathogenesis. METHODS: We analyzed 205 aging adults using single-channel sleep EEG, cerebrospinal fluid (CSF) AD biomarkers, and Clinical Dementia Rating® (CDR®) scale. We mapped SW-TB and SW-SP neural circuit coupling precision to amyloid positivity, cognitive impairment, and CSF AD biomarkers. RESULTS: Cognitive impairment correlated with lower TB spectral power in SW-TB coupling. Cognitively unimpaired, amyloid positive individuals demonstrated lower precision in SW-TB and SW-SP coupling compared to amyloid negative individuals. Significant biomarker correlations were found in oscillatory event coupling with CSF Aß42 /Aß40 , phosphorylated- tau181 , and total-tau. DISCUSSION: Sleep-dependent memory processing integrity in neural circuits can be measured for both SW-TB and SW-SP coupling. This breakdown associates with amyloid positivity, increased AD pathology, and cognitive impairment. HIGHLIGHTS: At-home sleep EEG is a potential biomarker of neural circuits linked to memory. Circuit precision is associated with amyloid positivity in asymptomatic aging adults. Levels of CSF amyloid and tau also correlate with circuit precision in sleep EEG. Theta burst EEG power is decreased in very early mild cognitive impairment. This technique may enable inexpensive wearable EEGs for monitoring brain health.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Adulto , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Cognição , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/líquido cefalorraquidiano , Fragmentos de Peptídeos/líquido cefalorraquidiano , Proteínas Amiloidogênicas
2.
Brain Behav Immun ; 113: 124-135, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37394144

RESUMO

BACKGROUND: Data from human studies suggest that immune dysregulation is associated with Alzheimer's disease (AD) pathology and cognitive decline and that neurites may be affected early in the disease trajectory. Data from animal studies further indicate that dysfunction in astrocytes and inflammation may have a pivotal role in facilitating dendritic damage, which has been linked with negative cognitive outcomes. To elucidate these relationships further, we have examined the relationship between astrocyte and immune dysregulation, AD-related pathology, and neuritic microstructure in AD-vulnerable regions in late life. METHODS: We evaluated panels of immune, vascular, and AD-related protein markers in blood and conducted in vivo multi-shell neuroimaging using Neurite Orientation Dispersion and Density Imaging (NODDI) to assess indices of neuritic density (NDI) and dispersion (ODI) in brain regions vulnerable to AD in a cohort of older adults (n = 109). RESULTS: When examining all markers in tandem, higher plasma GFAP levels were strongly related to lower neurite dispersion (ODI) in grey matter. No biomarker associations were found with higher neuritic density. Associations between GFAP and neuritic microstructure were not significantly impacted by symptom status, APOE status, or plasma Aß42/40 ratio; however, there was a large sex effect observed for neurite dispersion, wherein negative associations between GFAP and ODI were only observed in females. DISCUSSION: This study provides a comprehensive, concurrent appraisal of immune, vascular, and AD-related biomarkers in the context of advanced grey matter neurite orientation and dispersion methodology. Sex may be an important modifier of the complex associations between astrogliosis, immune dysregulation, and brain microstructure in older adults.


Assuntos
Doença de Alzheimer , Substância Branca , Animais , Humanos , Feminino , Idoso , Neuritos/patologia , Imagem de Tensor de Difusão/métodos , Gliose/patologia , Encéfalo/patologia , Neuroimagem/métodos , Doença de Alzheimer/patologia , Substância Branca/patologia , Imagem de Difusão por Ressonância Magnética
3.
bioRxiv ; 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36824720

RESUMO

Objective: Memory-associated neural circuits produce oscillatory events within single-channel sleep electroencephalography (EEG), including theta bursts (TBs), sleep spindles (SPs) and multiple subtypes of slow waves (SWs). Changes in the temporal "coupling" of these events are proposed to serve as a biomarker for early stages of Alzheimer's disease (AD) pathogenesis. Methods: We analyzed data from 205 aging adults, including single-channel sleep EEG, cerebrospinal fluid (CSF) AD-associated biomarkers, and Clinical Dementia Rating® (CDR®) scale. Individual SW events were sorted into high and low transition frequencies (TF) subtypes. We utilized time-frequency spectrogram locations within sleep EEG to "map" the precision of SW-TB and SW-SP neural circuit coupling in relation to amyloid positivity (by CSF Aß 42 /Aß 40 threshold), cognitive impairment (by CDR), and CSF levels of AD-associated biomarkers. Results: Cognitive impairment was associated with lower TB spectral power in both high and low TF SW-TB coupling (p<0.001, p=0.001). Cognitively unimpaired, amyloid positive aging adults demonstrated lower precision of the neural circuits propagating high TF SW-TB (p<0.05) and low TF SW-SP (p<0.005) event coupling, compared to cognitively unimpaired amyloid negative individuals. Biomarker correlations were significant for high TF SW-TB coupling with CSF Aß 42 /Aß 40 (p=0.005), phosphorylated-tau 181 (p<0.005), and total-tau (p<0.05). Low TF SW-SP coupling was also correlated with CSF Aß 42 /Aß 40 (p<0.01). Interpretation: Loss of integrity in neural circuits underlying sleep-dependent memory processing can be measured for both SW-TB and SW-SP coupling in spectral time-frequency space. Breakdown of sleep's memory circuit integrity is associated with amyloid positivity, higher levels of AD-associated pathology, and cognitive impairment.

4.
J Clin Exp Neuropsychol ; 44(3): 226-236, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35913095

RESUMO

INTRODUCTION: Non-amnestic presentations of neurodegenerative dementias, including posterior- and visual-predominant cognitive forms, are under-recognized. Specific screening measures for posterior cortical symptoms could allow for earlier, more accurate diagnosis and directed treatment. METHODS: Based on clinical experience with posterior cortical atrophy evaluations, high-yield screening questions were collected and organized into a 15-item self-report questionnaire, titled the Colorado Posterior Cortical Questionnaire (CPC-Q). The CPC-Q was then piloted within a longitudinal cohort of cognitive aging, including 63 older adults, including healthy older adults (n = 33) and adults with either amnestic Alzheimer's disease (n = 21) or posterior cortical atrophy (PCA, n = 9). RESULTS: The CPC-Q demonstrated acceptable psychometric properties (internal consistency, α = 0.89; mean item-total correlation = 0.62), correlated strongly with visuospatial measures on cognitive testing (p < 0.001), and could distinguish PCA from non-PCA groups (p < 0.001; AUC 0.95 (95% CI 0.88, 1.0)). CONCLUSIONS: The CPC-Q captured posterior cortical symptoms in older adults, using a gold standard of expert consensus PCA diagnosis. Future studies will validate the CPC-Q in a larger cohort, with recruitment of additional PCA participants, to evaluate its convergent and discriminant validity more thoroughly. As a short, self-report tool, the CPC-Q demonstrates potential to improve detection of non-amnestic neurodegenerative dementias in the clinical setting.


Assuntos
Doença de Alzheimer , Idoso , Doença de Alzheimer/psicologia , Atrofia/patologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Colorado/epidemiologia , Humanos , Inquéritos e Questionários
5.
Front Neurosci ; 16: 915934, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812239

RESUMO

Slow wave activity (SWA) during sleep is associated with synaptic regulation and memory processing functions. Each cycle of non-rapid-eye-movement (NREM) sleep demonstrates a waxing and waning amount of SWA during the transitions between stages N2 and N3 sleep, and the deeper N3 sleep is associated with an increased density of SWA. Further, SWA is an amalgam of different types of slow waves, each identifiable by their temporal coupling to spindle subtypes with distinct physiological features. The objectives of this study were to better understand the neurobiological properties that distinguish different slow wave and spindle subtypes, and to examine the composition of SWA across cycles of NREM sleep. We further sought to explore changes in the composition of NREM cycles that occur among aging adults. To address these goals, we analyzed subsets of data from two well-characterized cohorts of healthy adults: (1) The DREAMS Subjects Database (n = 20), and (2) The Cleveland Family Study (n = 60). Our analyses indicate that slow wave/spindle coupled events can be characterized as frontal vs. central in their relative distribution between electroencephalography (EEG) channels. The frontal predominant slow waves are identifiable by their coupling to late-fast spindles and occur more frequently during stage N3 sleep. Conversely, the central-associated slow waves are identified by coupling to early-fast spindles and favor occurrence during stage N2 sleep. Together, both types of slow wave/spindle coupled events form the composite of SWA, and their relative contribution to the SWA rises and falls across cycles of NREM sleep in accordance with depth of sleep. Exploratory analyses indicated that older adults produce a different composition of SWA, with a shift toward the N3, frontal subtype, which becomes increasingly predominant during cycles of NREM sleep. Overall, these data demonstrate that subtypes of slow wave/spindle events have distinct cortical propagation patterns and differ in their distribution across lighter vs. deeper NREM sleep. Future efforts to understand how slow wave sleep and slow wave/spindle coupling impact memory performance and neurological disease may benefit from examining the composition of SWA to avoid potential confounds that may occur when comparing dissimilar neurophysiological events.

6.
Sleep ; 44(10)2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-33999194

RESUMO

STUDY OBJECTIVES: Slow wave and spindle coupling supports memory consolidation, and loss of coupling is linked with cognitive decline and neurodegeneration. Coupling is proposed to be a possible biomarker of neurological disease, yet little is known about the different subtypes of coupling that normally occur throughout human development and aging. Here we identify distinct subtypes of spindles within slow wave upstates and describe their relationships with sleep stage across the human lifespan. METHODS: Coupling within a cross-sectional cohort of 582 subjects was quantified from stages N2 and N3 sleep across ages 6-88 years old. Results were analyzed across the study population via mixed model regression. Within a subset of subjects, we further utilized coupling to identify discrete subtypes of slow waves by their coupled spindles. RESULTS: Two different subtypes of spindles were identified during the upstates of (distinct) slow waves: an "early-fast" spindle, more common in stage N2 sleep, and a "late-fast" spindle, more common in stage N3. We further found stages N2 and N3 sleep contain a mixture of discrete subtypes of slow waves, each identified by their unique coupled-spindle timing and frequency. The relative contribution of coupling subtypes shifts across the human lifespan, and a deeper sleep phenotype prevails with increasing age. CONCLUSIONS: Distinct subtypes of slow waves and coupled spindles form the composite of slow wave sleep. Our findings support a model of sleep-dependent synaptic regulation via discrete slow wave/spindle coupling subtypes and advance a conceptual framework for the development of coupling-based biomarkers in age-associated neurological disease.


Assuntos
Consolidação da Memória , Sono de Ondas Lentas , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento , Criança , Estudos Transversais , Eletroencefalografia , Humanos , Longevidade , Pessoa de Meia-Idade , Sono , Adulto Jovem
7.
Neurobiol Aging ; 103: 68-77, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33845398

RESUMO

Astrocytes play a formative role in memory consolidation during physiological conditions; when dysregulated, astrocytes release glial fibrillary acidic protein (GFAP), which has been linked with negative memory outcomes in animal studies. We examined the association between blood GFAP, memory, and white matter (WM) integrity, accounting for blood markers of AD pathology (i.e., Aß42) and neurodegeneration (i.e., total tau; neurofilament light chain) in 114 older adults (asymptomatic, n = 69; MCI/AD dementia, n = 45). Higher levels of GFAP were associated with lower memory scores (p < 0.0001), such that for 1 SD increase in mean GFAP values, the memory composite score decreased on average by 0.49 (Standard error = 0.071). These results remained significant after controlling for diagnostic status and AD-related blood biomarkers. Higher GFAP was also related to lower WM integrity in regions vulnerable to AD pathology; however, WM integrity did not account for the association between GFAP and memory. Study findings suggest that higher blood levels of a marker of astrogliosis may reflect impoverished memory functions and white matter health, independent of markers of amyloid or neurodegeneration.


Assuntos
Doença de Alzheimer/patologia , Doença de Alzheimer/psicologia , Astrócitos/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/patologia , Gliose/psicologia , Envelhecimento Saudável/patologia , Envelhecimento Saudável/psicologia , Memória Episódica , Substância Branca/patologia , Substância Branca/ultraestrutura , Idoso , Idoso de 80 Anos ou mais , Astrócitos/fisiologia , Biomarcadores/sangue , Biomarcadores/metabolismo , Feminino , Proteína Glial Fibrilar Ácida/sangue , Gliose/diagnóstico , Humanos , Masculino , Pessoa de Meia-Idade
9.
J Neuropsychiatry Clin Neurosci ; 29(4): 308-318, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28506192

RESUMO

Toxic leukoencephalopathy (TL) is a disorder of brain white matter caused by exposure to leukotoxic agents. Magnetic resonance imaging (MRI) can readily identify this syndrome, and, together with diffusion tensor imaging, MRI continues to offer important insights into its nature. Since the first formal description of TL in 2001, many new leukotoxic disorders have been recognized, and the range of leukotoxins has expanded to include more therapeutic drugs, drugs of abuse, and environmental insults. While the understanding of pathophysiology remains incomplete, TL is increasingly common in clinical practice, and the potential long-term cognitive sequelae of toxic white matter injury merit attention.


Assuntos
Leucoencefalopatias/etiologia , Síndromes Neurotóxicas/etiologia , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Encéfalo/efeitos da radiação , Humanos , Leucoencefalopatias/diagnóstico por imagem , Leucoencefalopatias/prevenção & controle , Leucoencefalopatias/terapia , Síndromes Neurotóxicas/diagnóstico por imagem , Síndromes Neurotóxicas/prevenção & controle , Síndromes Neurotóxicas/terapia , Substância Branca/diagnóstico por imagem , Substância Branca/efeitos dos fármacos , Substância Branca/fisiopatologia , Substância Branca/efeitos da radiação
10.
Neurocase ; 22(3): 269-72, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26882285

RESUMO

Self-injurious behavior (SIB) is associated with several neurologic and psychiatric syndromes but rarely with focal lesions. Two patients with lesions of the right temporo-parietal junction presented to psychiatric inpatient services with SIB in the absence of notable neurologic deficits or suicidal ideation. Right temporo-parietal lesions may be associated with disturbances of agency and body ownership, both of which may facilitate SIB. Misoplegia, or hatred of a limb, may be associated with SIB and has been reported without hemiplegia with a right temporo-parietal lesion. Further study is warranted to improve our understanding of the mechanisms underlying SIB.


Assuntos
Lobo Parietal/patologia , Comportamento Autodestrutivo , Acidente Vascular Cerebral , Lobo Temporal/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Lobo Parietal/diagnóstico por imagem , Automutilação/etiologia , Automutilação/patologia , Automutilação/fisiopatologia , Comportamento Autodestrutivo/etiologia , Comportamento Autodestrutivo/patologia , Comportamento Autodestrutivo/fisiopatologia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/fisiopatologia , Lobo Temporal/diagnóstico por imagem
12.
Mol Cancer ; 10: 75, 2011 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-21682918

RESUMO

BACKGROUND: LIM kinase 1 (LIMK1) is expressed in both cytoplasmic and nuclear compartments, and is a key regulator of cytoskeletal organization involved in cell migration and proliferation. LIMK1 levels are increased in several human cancers, with LIMK1 over-expression in prostate and breast cancer cells leading to tumor progression. While it has been presumed that the mechanism by which LIMK1 promotes cancer progression is via its cytoplasmic effects, the role of nuclear vs cytoplasmic LIMK1 in the tumorigenic process has not been examined. RESULTS: To determine if cytoplasmic or nuclear LIMK1 expression correlated with breast cancer, we performed immunohistochemical (IHC) analysis of breast tissue microarrays (TMAs), The IHC analysis of breast TMAs revealed that 76% of malignant breast tissue samples strongly expressed LIMK1 in the cytoplasm, with 52% of these specimens also expressing nuclear LIMK1. Only 48% of benign breast samples displayed strong cytoplasmic LIMK1 expression and 27% of these expressed nuclear LIMK1. To investigate the respective roles of cytoplasmic and nuclear LIMK1 in breast cancer progression, we targeted GFP-LIMK1 to cytoplasmic and nuclear subcellular compartments by fusing nuclear export signals (NESs) or nuclear localization sequences (NLS), respectively, to the amino-terminus of GFP-LIMK1. Stable pools of MDA-MB-231 cells were generated by retroviral transduction, and fluorescence microscopy revealed that GFP alone (control) and GFP-LIMK1 were each expressed in both the cytoplasm and nucleus of MDA-MB-231 cells, whereas NLS-GFP-LIMK1 was expressed in the nucleus and NES-GFP-LIMK1 was expressed in the cytoplasm. Western blot analyses revealed equal expression of GFP-LIMK1 and NES-GFP-LIMK1, with NLS-GFP-LIMK1 expression being less but equal to endogenous LIMK1. Also, Western blotting revealed increased levels of phospho-cofilin, phospho-FAK, phospho-paxillin, phospho-Src, phospho-AKT, and phospho-Erk1/2 in cells expressing all GFP-LIMK1 fusions, compared to GFP alone. Invasion assays revealed that all GFP-LIMK1 fusions increased MDA-MB-231 cell invasion ~1.5-fold, compared to GFP-only control cells. Tumor xenograft studies in nude mice revealed that MDA-MB-231 cells stably expressing GFP-LIMK, NLS-GFP-LIMK1 and NES-GFP-LIMK1 enhanced tumor growth 2.5-, 1.6- and 4.7-fold, respectively, compared to GFP-alone. CONCLUSION: Taken together, these data demonstrate that LIMK1 activity in both the cytoplasmic and nuclear compartments promotes breast cancer progression, underscoring that nuclear LIMK1 contributes to the transforming function of LIMK1.


Assuntos
Neoplasias da Mama/fisiopatologia , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Quinases Lim/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Progressão da Doença , Feminino , Quinase 1 de Adesão Focal/metabolismo , Ordem dos Genes , Humanos , Quinases Lim/genética , Camundongos , Camundongos Nus , Sinais de Exportação Nuclear/genética , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/metabolismo , Fosforilação , Transporte Proteico , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Carga Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...