Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 10820, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31346249

RESUMO

Asparaginyl endopeptidases (AEPs) are a class of enzymes commonly associated with proteolysis in the maturation of seed storage proteins. However, a subset of AEPs work preferentially as peptide ligases, coupling release of a leaving group to formation of a new peptide bond. These "ligase-type" AEPs require only short recognition motifs to ligate a range of targets, making them useful tools in peptide and protein engineering for cyclisation of peptides or ligation of separate peptides into larger products. Here we report the recombinant expression, ligase activity and cyclisation kinetics of three new AEPs from the cyclotide producing plant Oldenlandia affinis with superior kinetics to the prototypical recombinant AEP ligase OaAEP1b. These AEPs work preferentially as ligases at both acidic and neutral pH and we term them "canonical AEP ligases" to distinguish them from other AEPs where activity preferences shift according to pH. We show that these ligases intrinsically favour ligation over hydrolysis, are highly efficient at cyclising two unrelated peptides and are compatible with organic co-solvents. Finally, we demonstrate the broad scope of recombinant AEPs in biotechnology by the backbone cyclisation of an intrinsically disordered protein, the 25 kDa malarial vaccine candidate Plasmodium falciparum merozoite surface protein 2 (MSP2).


Assuntos
Cisteína Endopeptidases/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Ligases/metabolismo , Proteínas de Plantas/metabolismo , Antígenos de Protozoários/metabolismo , Ciclização , Modelos Moleculares , Engenharia de Proteínas , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/metabolismo
2.
J Exp Bot ; 69(3): 633-641, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29309615

RESUMO

Cyclotides are ultra-stable, backbone-cyclized plant defence peptides that have attracted considerable interest in the pharmaceutical industry. This is due to their range of native bioactivities as well as their ability to stabilize other bioactive peptides within their framework. However, a hindrance to their widespread application is the lack of scalable, cost-effective production strategies. Plant-based production is an attractive, benign option since all biosynthetic steps are performed in planta. Nonetheless, cyclization in non-cyclotide-producing plants is poor. Here, we show that cyclic peptides can be produced efficiently in Nicotiana benthamiana, one of the leading plant-based protein production platforms, by co-expressing cyclotide precursors with asparaginyl endopeptidases that catalyse peptide backbone cyclization. This approach was successful in a range of other plants (tobacco, bush bean, lettuce, and canola), either transiently or stably expressed, and was applicable to both native and engineered cyclic peptides. We also describe the use of the transgenic system to rapidly identify new asparaginyl endopeptidase cyclases and interrogate their substrate sequence requirements. Our results pave the way for exploiting cyclotides for pest protection in transgenic crops as well as large-scale production of cyclic peptide pharmaceuticals in plants.


Assuntos
Cisteína Endopeptidases/metabolismo , Nicotiana/metabolismo , Peptídeos Cíclicos/metabolismo , Proteínas de Plantas/metabolismo , Cisteína Endopeptidases/genética , Perfilação da Expressão Gênica , Peptídeos Cíclicos/genética , Proteínas de Plantas/genética , Nicotiana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...