Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38610999

RESUMO

Artesunate belongs to a class of medications derived from the sweet wormwood plant (Artemisia annua) known as artemisinins. Artesunate has traditionally been used as a frontline treatment for severe malaria but has also demonstrated antineoplastic activity against various malignancies, including ovarian cancer. Data suggest that artesunate exacerbates cellular oxidative stress, triggering apoptosis. In the current study, we investigated the ability of navitoclax, an inhibitor of the antiapoptotic Bcl-2 protein family, to enhance artesunate efficacy in ovarian cancer cells. Artesunate and navitoclax both demonstrated antiproliferative effects on 2D and 3D ovarian cancer cell models as single agents. Upon combination of navitoclax with artesunate, antineoplastic drug synergy was also observed in each of the 2D cell lines and ovarian tumor organoid models tested. Further investigation of this drug combination using intraperitoneal CAOV3 xenograft models in BALB/scid mice showed that the artesunate/navitoclax doublet was superior to single-agent artesunate and vehicle control treatment. However, it did not outperform single-agent navitoclax. With optimization, this drug combination could provide a new therapeutic option for ovarian cancer and warrants further preclinical investigation.

2.
Adv Healthc Mater ; 12(27): e2301163, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37377147

RESUMO

Tumor-associated macrophages are the predominant immune cells present in the tumor microenvironment and mostly exhibit a pro-tumoral M2-like phenotype. However, macrophage biology is reversible allowing them to acquire an anti-tumoral M1-like phenotype in response to external stimuli. A potential therapeutic strategy for treating cancer may be achieved by modulating macrophages from an M2 to an M1-like phenotype with the tumor microenvironment. Here, programmed nanovesicles are generated as an immunomodulatory therapeutic platform with the capability to re-polarize M2 macrophages toward a proinflammatory phenotype. Programmed nanovesicles are engineered from cellular membranes to have specific immunomodulatory properties including the capability to bidirectionally modulate immune cell polarization. These programmed nanovesicles decorated with specific membrane-bound ligands can be targeted toward specific cell types including immune cells. Macrophage-derived vesicles are engineered to enhance immune cell reprogramming toward a proinflammatory phenotype.


Assuntos
Macrófagos , Neoplasias , Humanos , Macrófagos/metabolismo , Neoplasias/metabolismo , Fenótipo , Imunomodulação , Microambiente Tumoral
3.
ChemMedChem ; 18(3): e202200368, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36342449

RESUMO

DNA coordinating platinum (Pt) containing compounds cisplatin and carboplatin have been used for the treatment of ovarian cancer therapy for four decades. However, recurrent Pt-resistant cancers are a major cause of mortality. To combat Pt-resistant ovarian cancers, we designed and synthesized a conjugate of an anticancer drug mithramycin with a reactive Pt(II) bearing moiety, which we termed mithplatin. The conjugates displayed both the Mg2+ -dependent noncovalent DNA binding characteristic of mithramycin and the covalent crosslinking to DNA of the Pt. The conjugate was three times as potent as cisplatin against ovarian cancer cells. The DNA lesions caused by the conjugate led to the generation of DNA double-strand breaks, as also observed with cisplatin. Nevertheless, the conjugate was highly active against both Pt-sensitive and Pt-resistant ovarian cancer cells. This study paves the way to developing mithplatins to combat Pt-resistant ovarian cancers.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Humanos , Feminino , Cisplatino/farmacologia , Cisplatino/química , Plicamicina/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , DNA/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos
4.
Blood Adv ; 6(11): 3386-3397, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35671062

RESUMO

Understanding the genomic and epigenetic mechanisms of drug resistance in pediatric acute lymphoblastic leukemia (ALL) is critical for further improvements in treatment outcomes. The role of transcriptomic response in conferring resistance to l-asparaginase (LASP) is poorly understood beyond asparagine synthetase (ASNS). We defined reproducible LASP response genes in LASP-resistant and LASP-sensitive ALL cell lines as well as primary leukemia samples from newly diagnosed patients. Defining target genes of the amino acid stress response-related transcription factor activating transcription factor 4 (ATF4) in ALL cell lines using chromatin immunoprecipitation sequencing (ChIP-seq) revealed 45% of genes that changed expression after LASP treatment were direct targets of the ATF4 transcription factor, and 34% of these genes harbored LASP-responsive ATF4 promoter binding events. SLC7A11 was found to be a response gene in cell lines and patient samples as well as a direct target of ATF4. SLC7A11 was also one of only 2.4% of LASP response genes with basal level gene expression that also correlated with LASP ex vivo resistance in primary leukemia cells. Experiments using chemical inhibition of SLC7A11 with sulfasalazine, gene overexpression, and partial gene knockout recapitulated LASP resistance or sensitivity in ALL cell lines. These findings show the importance of assessing changes in gene expression following treatment with an antileukemic agent for its association with drug resistance and highlight that many response genes may not differ in their basal expression in drug-resistant leukemia cells.


Assuntos
Aspartato-Amônia Ligase , Leucemia-Linfoma Linfoblástico de Células Precursoras , Fator 4 Ativador da Transcrição/genética , Aminoácidos/uso terapêutico , Asparaginase/farmacologia , Asparaginase/uso terapêutico , Aspartato-Amônia Ligase/genética , Aspartato-Amônia Ligase/metabolismo , Linhagem Celular Tumoral , Criança , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
5.
Front Oncol ; 12: 1042730, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713536

RESUMO

Background: Ovarian cancer is a deadly female malignancy with a high rate of recurrent and chemotherapy-resistant disease. Tumor-associated macrophages (TAMs) are a significant component of the tumor microenvironment and include high levels of M2-protumor macrophages that promote chemoresistance and metastatic spread. M2 macrophages can be converted to M1 anti-tumor macrophages, representing a novel therapeutic approach. Vesicles engineered from M1 macrophages (MEVs) are a novel method for converting M2 macrophages to M1 phenotype-like macrophages. Methods: Macrophages were isolated and cultured from human peripheral blood mononuclear cells. Macrophages were stimulated to M1 or M2 phenotypes utilizing LPS/IFN-γ and IL-4/IL-13, respectively. M1 MEVs were generated with nitrogen cavitation and ultracentrifugation. Co-culture of ovarian cancer cells with macrophages and M1 MEVs was followed by cytokine, PCR, and cell viability analysis. Murine macrophage cell line, RAW264.7 cells were cultured and used to generate M1 MEVs for use in ovarian cancer xenograft models. Results: M1 MEVs can effectively convert M2 macrophages to an M1-like state both in isolation and when co-cultured with ovarian cancer cells in vitro, resulting in a reduced ovarian cancer cell viability. Additionally, RAW264.7 M1 MEVs can localize to ovarian cancer tumor xenografts in mice. Conclusion: Human M1 MEVs can repolarize M2 macrophages to a M1 state and have anti-cancer activity against ovarian cancer cell lines. RAW264.7 M1 MEVs localize to tumor xenografts in vivo murine models.

6.
PLoS One ; 16(8): e0254205, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34347777

RESUMO

Conventional frontline treatment for ovarian cancer consists of successive chemotherapy cycles of paclitaxel and platinum. Despite the initial favorable responses for most patients, chemotherapy resistance frequently leads to recurrent or refractory disease. New treatment strategies that circumvent or prevent mechanisms of resistance are needed to improve ovarian cancer therapy. We established in vitro paclitaxel-resistant ovarian cancer cell line and organoid models. Gene expression differences in resistant and sensitive lines were analyzed by RNA sequencing. We manipulated candidate genes associated with paclitaxel resistance using siRNA or small molecule inhibitors, and then screened the cells for paclitaxel sensitivity using cell viability assays. We used the Bliss independence model to evaluate the anti-proliferative synergy for drug combinations. ABCB1 expression was upregulated in paclitaxel-resistant TOV-21G (q < 1x10-300), OVCAR3 (q = 7.4x10-156) and novel ovarian tumor organoid (p = 2.4x10-4) models. Previous reports have shown some tyrosine kinase inhibitors can inhibit ABCB1 function. We tested a panel of tyrosine kinase inhibitors for the ability to sensitize resistant ABCB1-overexpressing ovarian cancer cell lines to paclitaxel. We observed synergy when we combined poziotinib or lapatinib with paclitaxel in resistant TOV-21G and OVCAR3 cells. Silencing ABCB1 expression in paclitaxel-resistant TOV-21G and OVCAR3 cells reduced paclitaxel IC50 by 20.7 and 6.2-fold, respectively. Furthermore, we demonstrated direct inhibition of paclitaxel-induced ABCB1 transporter activity by both lapatinib and poziotinib. In conclusion, lapatinib and poziotinib combined with paclitaxel synergizes to inhibit the proliferation of ABCB1-overexpressing ovarian cancer cells in vitro. The addition of FDA-approved lapatinib to second-line paclitaxel therapy is a promising strategy for patients with recurrent ovarian cancer.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Lapatinib/farmacologia , Proteínas de Neoplasias/metabolismo , Neoplasias Ovarianas , Quinazolinas/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Proteínas de Neoplasias/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo
7.
Biomedicines ; 9(8)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34440225

RESUMO

The development of patient-derived tumor organoids (TOs) from an epithelial ovarian cancer tumor obtained at the time of primary or interval debulking surgery has the potential to play an important role in precision medicine. Here, we utilized TOs to test front-line chemotherapy sensitivity and to investigate genomic drivers of carboplatin resistance. We developed six high-grade, serous epithelial ovarian cancer tumor organoid lines from tissue obtained during debulking surgery (two neoadjuvant-carboplatin-exposed and four chemo-naïve). Each organoid line was screened for sensitivity to carboplatin at four different doses (100, 10, 1, and 0.1 µM). Cell viability curves and resultant EC50 values were determined. One organoid line, UK1254, was predicted to be resistant to carboplatin based on its EC50 value (50.2 µM) being above clinically achievable Cmax. UK1254 had a significantly shorter PFS than the rest of the subjects (p = 0.0253) and was treated as a platinum-resistant recurrence. Subsequent gene expression analysis revealed extensively interconnected, differentially expressed pathways related to NF-kB, cellular differentiation (PRDM6 activation), and the linkage of B-cell receptor signaling to the PI3K-Akt signaling pathway (PI3KAP1 activation). This study demonstrates that patient-derived tumor organoids can be developed from patients at the time of primary or interval debulking surgery and may be used to predict clinical platinum sensitivity status or to investigate drivers of carboplatin resistance.

8.
Cancers (Basel) ; 13(8)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33920029

RESUMO

Artesunate is the most common treatment for malaria throughout the world. Artesunate has anticancer activity likely through the induction of reactive oxygen species, the same mechanism of action utilized in Plasmodium falciparum infections. Components of the kelch-like ECH-associated protein 1 (KEAP1)/nuclear factor erythroid 2-related factor 2 (NRF2) pathway, which regulates cellular response to oxidative stress, are mutated in approximately 30% of non-small-cell lung cancers (NSCLC); therefore, we tested the hypothesis that KEAP1 is required for artesunate sensitivity in NSCLC. Dose response assays identified A549 cells, which have a G333C-inactivating mutation in KEAP1, as resistant to artesunate, with an IC50 of 23.6 µM, while H1299 and H1563 cells were sensitive to artesunate, with a 10-fold lower IC50. Knockdown of KEAP1 through siRNA caused increased resistance to artesunate in H1299 cells. Alternatively, the pharmacological inhibition of NRF2, which is activated downstream of KEAP1 loss, by ML385 partially restored sensitivity of A549 cells to artesunate, and the combination of artesunate and ML385 was synergistic in both A549 and H1299 cells. These findings demonstrate that KEAP1 is required for the anticancer activity of artesunate and support the further development of NRF2 inhibitors to target patients with mutations in the KEAP1/NRF2 pathway.

9.
Diagnostics (Basel) ; 11(3)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652561

RESUMO

BACKGROUND: Ovarian cancer is the deadliest gynecologic malignancy despite current first-line treatment with a platinum and taxane doublet. Artesunate has broad antineoplastic properties but has not been investigated in combination with carboplatin and paclitaxel for ovarian cancer treatment. METHODS: Standard cell culture technique with commercially available ovarian cancer cell lines were utilized in cell viability, DNA damage, and cell cycle progression assays to qualify and quantify artesunate treatment effects. Additionally, the sequence of administering artesunate in combination with paclitaxel and carboplatin was determined. The activity of artesunate was also assessed in 3D organoid models of primary ovarian cancer and RNAseq analysis was utilized to identify genes and the associated genetic pathways that were differentially regulated in artesunate resistant organoid models compared to organoids that were sensitive to artesunate. RESULTS: Artesunate treatment reduces cell viability in 2D and 3D ovarian cancer cell models. Clinically relevant concentrations of artesunate induce G1 arrest, but do not induce DNA damage. Pathways related to cell cycle progression, specifically G1/S transition, are upregulated in ovarian organoid models that are innately more resistant to artesunate compared to more sensitive models. Depending on the sequence of administration, the addition of artesunate to carboplatin and paclitaxel improves their effectiveness. CONCLUSIONS: Artesunate has preclinical activity in ovarian cancer that merits further investigation to treat ovarian cancer.

10.
ACS Omega ; 6(5): 3847-3857, 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33585763

RESUMO

Macrophages, one of the most important phagocytic cells of the immune system, are highly plastic and are known to exhibit diverse roles under different pathological conditions. The ability to repolarize macrophages from pro-inflammatory (M1) to anti-inflammatory (M2) or vice versa offers a promising therapeutic approach for treating various diseases such as traumatic injury and cancer. Herein, it is demonstrated that macrophage-engineered vesicles (MEVs) generated by disruption of macrophage cellular membranes can be used as nanocarriers capable of reprogramming macrophages and microglia toward either pro- or anti-inflammatory phenotypes. MEVs can be produced at high yields and easily loaded with diagnostic molecules or chemotherapeutics and delivered to both macrophages and cancer cells in vitro and in vivo. Overall, MEVs show promise as potential delivery vehicles for both therapeutics and their ability to controllably modulate macrophage/microglia inflammatory phenotypes.

11.
Biomedicines ; 9(1)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445667

RESUMO

Ovarian cancer is a highly deadly malignancy in which recurrence is considered incurable. Resistance to platinum-based chemotherapy bodes a particularly abysmal prognosis, underscoring the need for novel therapeutic agents and strategies. The use of mithramycin, an antineoplastic antibiotic, has been previously limited by its narrow therapeutic window. Recent advances in semisynthetic methods have led to mithramycin analogs with improved pharmacological profiles. Mithramycin inhibits the activity of the transcription factor Sp1, which is closely linked with ovarian tumorigenesis and platinum-resistance. This article summarizes recent clinical developments related to mithramycin and postulates a role for the use of mithramycin, or its analog, in the treatment of platinum-resistant ovarian cancer.

12.
J Clin Invest ; 130(12): 6600-6615, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33164984

RESUMO

BACKGROUNDInterpatient differences in the accumulation of methotrexate's active polyglutamylated metabolites (MTXPGs) in leukemia cells influence its antileukemic effects.METHODSTo identify genomic and epigenomic and patient variables determining the intracellular accumulation of MTXPGs, we measured intracellular MTXPG levels in acute lymphoblastic leukemia (ALL) cells from 388 newly diagnosed patients after in vivo high-dose methotrexate (HDMTX) (1 g/m2) treatment, defined ALL subtypes, and assessed genomic and epigenomic variants influencing folate pathway genes (mRNA, miRNA, copy number alterations [CNAs], SNPs, single nucleotide variants [SNVs], CpG methylation).RESULTSWe documented greater than 100-fold differences in MTXPG levels, which influenced its antileukemic effects (P = 4 × 10-5). Three ALL subtypes had lower MTXPG levels (T cell ALL [T-ALL] and B cell ALL [B-ALL] with the TCF3-PBX1 or ETV6-RUNX1 fusions), and 2 subtypes had higher MTXPG levels (hyperdiploid and BCR-ABL like). The folate pathway genes SLC19A1, ABCC1, ABCC4, FPGS, and MTHFD1 significantly influenced intracellular MTXPG levels (P = 2.9 × 10-3 to 3.7 × 10-8). A multivariable model including the ALL subtype (P = 1.1 × 10-14), the SLC19A1/(ABCC1 + ABCC4) transporter ratio (P = 3.6 × 10-4), the MTX infusion time (P = 1.5 × 10-3), FPGS mRNA expression (P = 2.1 × 10-3), and MTX systemic clearance (P = 4.4 × 10-2) explained 42% of the variation in MTXPG accumulation (P = 1.1 × 10-38). Model simulations indicated that a longer infusion time (24 h vs. 4 h) was superior in achieving higher intracellular MTXPG levels across all subtypes if ALL.CONCLUSIONSThese findings provide insights into mechanisms underlying interpatient differences in intracellular accumulation of MTXPG in leukemia cells and its antileukemic effectsFUNDINGTHE National Cancer Institute (NCI) and the Institute of General Medical Sciences of the NIH, the Basque Government Programa Posdoctoral de Perfeccionamiento de Personal Investigador doctor, and the American Lebanese Syrian Associated Charities (ALSAC).


Assuntos
Metotrexato/análogos & derivados , Proteínas de Neoplasias , Ácido Poliglutâmico/análogos & derivados , Leucemia-Linfoma Linfoblástico de Células Precursoras , Adolescente , Linhagem Celular Tumoral , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Metotrexato/farmacocinética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Testes Farmacogenômicos , Ácido Poliglutâmico/farmacocinética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia
13.
Nat Cancer ; 1(3): 329-344, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32885175

RESUMO

Identification of genomic and epigenomic determinants of drug resistance provides important insights for improving cancer treatment. Using agnostic genome-wide interrogation of mRNA and miRNA expression, DNA methylation, SNPs, CNAs and SNVs/Indels in primary human acute lymphoblastic leukemia cells, we identified 463 genomic features associated with glucocorticoid resistance. Gene-level aggregation identified 118 overlapping genes, 15 of which were confirmed by genome-wide CRISPR screen. Collectively, this identified 30 of 38 (79%) known glucocorticoid-resistance genes/miRNAs and all 38 known resistance pathways, while revealing 14 genes not previously associated with glucocorticoid-resistance. Single cell RNAseq and network-based transcriptomic modelling corroborated the top previously undiscovered gene, CELSR2. Manipulation of CELSR2 recapitulated glucocorticoid resistance in human leukemia cell lines and revealed a synergistic drug combination (prednisolone and venetoclax) that mitigated resistance in mouse xenograft models. These findings illustrate the power of an integrative genomic strategy for elucidating genes and pathways conferring drug resistance in cancer cells.


Assuntos
MicroRNAs , Leucemia-Linfoma Linfoblástico de Células Precursoras , Animais , Resistencia a Medicamentos Antineoplásicos/genética , Genômica , Glucocorticoides/farmacologia , Humanos , Camundongos , MicroRNAs/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico
14.
Diagnostics (Basel) ; 10(2)2020 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-32098452

RESUMO

OBJECTIVE: Despite the promise of PARP inhibitors (PARPi) for treating BRCA1/2 mutated ovarian cancer (OC), drug resistance invariably develops. We hypothesized rationale drug combinations, targeting key molecules in DNA repair pathways and the cell cycle may be synergistic and overcome acquired PARPi resistance. METHODS: Drug sensitivity to PARPi alone and in combination with inhibitors of key DNA repair and cell cycle proteins, including ATR (VE-821), Chk1 (MK-8776), Wee1 (MK-1775), RAD51 (RI-1) was assessed in PARPi-sensitive (UWB1) and -resistant (UWB1-R) gBRCA1 mutant OC cell lines using a cell proliferation assay. The Bliss synergy model was used to estimate the two-drug combination effect and pharmacologic synergy (Bliss score ≥ 0) or antagonistic (Bliss score ≥ 0) response of the PARPi in combination with the inhibitors. RESULTS: IC50 for olaparib alone was 1.6 ± 0.9 µM compared to 3.4 ± 0.6 µM (p = 0.05) for UWB1 and UWB1-R cells, respectively. UWB1-R demonstrated increased sensitivity to ATRi (p = 0.04) compared to UWB1. Olaparib (0.3-1.25 µM) and ATRi (0.8-2.5 µM) were synergistic with Bliss scores of 17.2 ± 0.2, 11.9 ± 0.6 for UWB1 and UWB1-R cells, respectively. Olaparib (0.3-1.25 µM) and Chk1i(0.05-1.25 µM) were synergistic with Bliss scores of 8.3 ± 1.6, 5.7 ± 2.9 for UWB1 and UWB1-R cells, respectively. CONCLUSIONS: Combining an ATRi or Chk1i with olaparib is synergistic in both PARPi-sensitive and -resistant BRCA1 mutated OC cell models, and are rationale combinations for further clinical development.

15.
ACS Omega ; 4(7): 12657-12664, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31460386

RESUMO

Efficient delivery of therapeutics across the cell membrane to the interior of the cell remains a challenge both in vitro and in vivo. Here, we demonstrate that vesicles derived from cellular membranes can be efficiently loaded with cargo that can then be delivered to the interior of the cell. These vesicles demonstrated cell-targeting specificity as well as the ability to deliver a wide range of different cargos. We utilized this approach to deliver both lipophilic and hydrophilic cargos including therapeutics and DNA in vitro. We further demonstrated in vivo targeting and delivery using fluorescently labeled vesicles to target tumor xenografts in an animal. Cell-derived vesicles can be generated in high yields and are easily loaded with a variety of cargos. The ability of these vesicles to specifically target the same cell type from which they originated provides an efficient means of delivering cargo, such as therapeutics, both in vitro and in vivo.

16.
Nat Genet ; 47(6): 607-14, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25938942

RESUMO

Glucocorticoids are universally used in the treatment of acute lymphoblastic leukemia (ALL), and resistance to glucocorticoids in leukemia cells confers poor prognosis. To elucidate mechanisms of glucocorticoid resistance, we determined the prednisolone sensitivity of primary leukemia cells from 444 patients newly diagnosed with ALL and found significantly higher expression of CASP1 (encoding caspase 1) and its activator NLRP3 in glucocorticoid-resistant leukemia cells, resulting from significantly lower somatic methylation of the CASP1 and NLRP3 promoters. Overexpression of CASP1 resulted in cleavage of the glucocorticoid receptor, diminished the glucocorticoid-induced transcriptional response and increased glucocorticoid resistance. Knockdown or inhibition of CASP1 significantly increased glucocorticoid receptor levels and mitigated glucocorticoid resistance in CASP1-overexpressing ALL. Our findings establish a new mechanism by which the NLRP3-CASP1 inflammasome modulates cellular levels of the glucocorticoid receptor and diminishes cell sensitivity to glucocorticoids. The broad impact on the glucocorticoid transcriptional response suggests that this mechanism could also modify glucocorticoid effects in other diseases.


Assuntos
Proteínas de Transporte/metabolismo , Caspase 1/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/enzimologia , Receptores de Glucocorticoides/metabolismo , Adolescente , Antineoplásicos Hormonais/farmacologia , Sequência de Bases , Criança , Pré-Escolar , Metilação de DNA , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Regulação Leucêmica da Expressão Gênica , Células HEK293 , Humanos , Lactente , Recém-Nascido , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Recidiva Local de Neoplasia/enzimologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Prednisolona/farmacologia , Proteólise , Transcrição Gênica , Células Tumorais Cultivadas , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...