Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 2: e323, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24711972

RESUMO

The neurodegenerative disease spinocerebellar ataxia type 1 (SCA1) is caused by aggregation and misfolding of the ataxin-1 protein. While the pathology correlates with mutations that lead to expansion of a polyglutamine tract in the protein, other regions contribute to the aggregation process as also non-expanded ataxin-1 is intrinsically aggregation-prone and forms nuclear foci in cell. Here, we have used a combined approach based on FRET analysis, confocal microscopy and in vitro techniques to map aggregation-prone regions other than polyglutamine and to establish the importance of dimerization in self-association/foci formation. Identification of aggregation-prone regions other than polyglutamine could greatly help the development of SCA1 treatment more specific than that based on targeting the low complexity polyglutamine region.

2.
Protein Sci ; 13(11): 2925-38, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15498938

RESUMO

Pineal hormone melatonin (N-acetyl-5-methoxytryptamine) is thought to modulate the calcium/calmodulin signaling pathway either by changing intracellular Ca(2+) concentration via activation of its G-protein-coupled membrane receptors, or through a direct interaction with calmodulin (CaM). The present work studies the direct interaction of melatonin with intact calcium-saturated CaM both experimentally, by fluorescence and nuclear magnetic resonance spectroscopies, and theoretically, by molecular dynamics simulations. The analysis of the experimental data shows that the interaction is calcium-dependent. The affinity, as obtained from monitoring (15)N and (1)H chemical shift changes for a melatonin titration, is weak (in the millimolar range) and comparable for the N- and C-terminal domains. Partial replacement of diamagnetic Ca(2+) by paramagnetic Tb(3+) allowed the measurement of interdomain NMR pseudocontact shifts and residual dipolar couplings, indicating that each domain movement in the complex is not correlated with the other one. Molecular dynamics simulations allow us to follow the dynamics of melatonin in the binding pocket of CaM. Overall, this study provides an example of how a combination of experimental and theoretical approaches can shed light on a weakly interacting system of biological and pharmacological significance.


Assuntos
Calmodulina/química , Melatonina/química , Sítios de Ligação , Cálcio/química , Calmodulina/metabolismo , Simulação por Computador , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Modelos Moleculares , Movimento (Física) , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica
3.
Biochemistry ; 41(21): 6850-9, 2002 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-12022890

RESUMO

Calmodulin, the Ca(2+)-dependent activator of many cellular processes, contains two well-defined structural domains, each of which binds two Ca(2+) ions. In its Ca(2+)-free (apo) form, it provides an attractive model for studying mechanisms of protein unfolding, exhibiting two separable, reversible processes, indicating two structurally autonomous folding units. (1)H-(15)N HSQC NMR in principle offers a detailed picture of the behavior of individual residues during protein unfolding transitions, but is limited by the lack of dispersion of resonances in the unfolded state. In this work, we have used selective [(15)N]Ile labeling of four distinctive positions in each calmodulin domain to monitor the relative thermal stability of the folding units in wild-type apocalmodulin and in mutants in which either the N- or C-domain is destabilized. These mutations lead to a characteristic perturbation of the stability (T(m)) of the nonmutated domain relative to that of wild-type apocalmodulin. The ability to monitor specific (15)N-labeled residues, well-distributed throughout the domain, provides strong evidence for the autonomy of a given folding unit, as well as providing accurate measurements of the unfolding parameters T(m) and DeltaH(m). The thermodynamic parameters are interpreted in terms of interactions between one folded and one unfolded domain of apocalmodulin, where stabilization on the order of a few kilocalories per mole is sufficient to cause significant changes in the observed unfolding behavior of a given folding unit. The selective (15)N labeling approach is thus a general method that can provide detailed information about structural intermediates populated in complex protein unfolding processes.


Assuntos
Apoproteínas/química , Cálcio/química , Calmodulina/química , Isoleucina/química , Animais , Apoproteínas/genética , Calmodulina/genética , Drosophila melanogaster/química , Marcação por Isótopo/métodos , Isótopos de Nitrogênio/química , Ressonância Magnética Nuclear Biomolecular , Mutação Puntual , Desnaturação Proteica , Dobramento de Proteína , Temperatura , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...