Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genet Med Open ; 1(1)2023.
Artigo em Inglês | MEDLINE | ID: mdl-38827422

RESUMO

Purpose: Modeling disease variants in animals is useful for drug discovery, understanding disease pathology, and classifying variants of uncertain significance (VUS) as pathogenic or benign. Methods: Using Clustered Regularly Interspaced Short Palindromic Repeats, we performed a Whole-gene Humanized Animal Model procedure to replace the coding sequence of the animal model's unc-18 ortholog with the coding sequence for the human STXBP1 gene. Next, we used Clustered Regularly Interspaced Short Palindromic Repeats to introduce precise point variants in the Whole-gene Humanized Animal Model-humanized STXBP1 locus from 3 clinical categories (benign, pathogenic, and VUS). Twenty-six phenotypic features extracted from video recordings were used to train machine learning classifiers on 25 pathogenic and 32 benign variants. Results: Using multiple models, we were able to obtain a diagnostic sensitivity near 0.9. Twenty-three VUS were also interrogated and 8 of 23 (34.8%) were observed to be functionally abnormal. Interestingly, unsupervised clustering identified 2 distinct subsets of known pathogenic variants with distinct phenotypic features; both p.Tyr75Cys and p.Arg406Cys cluster away from other variants and show an increase in swim speed compared with hSTXBP1 worms. This leads to the hypothesis that the mechanism of disease for these 2 variants may differ from most STXBP1-mutated patients and may account for some of the clinical heterogeneity observed in the patient population. Conclusion: We have demonstrated that automated analysis of a small animal system is an effective, scalable, and fast way to understand functional consequences of variants in STXBP1 and identify variant-specific intensities of aberrant activity suggesting a genotype-to-phenotype correlation is likely to occur in human clinical variations of STXBP1.

2.
J Mol Biol ; 433(10): 166945, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33753053

RESUMO

The COVID-19 pandemic entered its third and most intense to date wave of infections in November 2020. This perspective article describes how combination therapies (polytherapeutics) are a needed focus for helping battle the severity of complications from SARS-CoV-2 infection. It outlines the types of systems that are needed for fast and efficient combinatorial assessment of therapeutic candidates. Proposed are micro-physiological systems using human iPSC as a format for tissue-specific modeling of infection, the use of gene-humanized zebrafish and C. elegans for combinatorial drug screens due to the animals being addressable in liquid multi-well formats, and the use of engineered pseudo-typing systems to safely model infection in the transgenic animals and engineered tissue systems.


Assuntos
Tratamento Farmacológico da COVID-19 , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos/métodos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Animais , Animais Geneticamente Modificados , COVID-19/economia , COVID-19/genética , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Humanos , Peixe-Zebra/genética
4.
PLoS One ; 6(9): e24666, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21969859

RESUMO

Non-invasive recording in untethered animals is arguably the ultimate step in the analysis of neuronal function, but such recordings remain elusive. To address this problem, we devised a system that tracks neuron-sized fluorescent targets in real time. The system can be used to create virtual environments by optogenetic activation of sensory neurons, or to image activity in identified neurons at high magnification. By recording activity in neurons of freely moving C. elegans, we tested the long-standing hypothesis that forward and reverse locomotion are generated by distinct neuronal circuits. Surprisingly, we found motor neurons that are active during both types of locomotion, suggesting a new model of locomotion control in C. elegans. These results emphasize the importance of recording neuronal activity in freely moving animals and significantly expand the potential of imaging techniques by providing a mean to stabilize fluorescent targets.


Assuntos
Caenorhabditis elegans/fisiologia , Eletrofisiologia/métodos , Neurônios/patologia , Animais , Comportamento Animal , Cálcio/química , Corantes Fluorescentes/farmacologia , Locomoção , Modelos Neurológicos , Atividade Motora/fisiologia , Neurônios Motores/metabolismo , Movimento , Osmose , Processamento de Sinais Assistido por Computador
5.
PLoS One ; 6(10): e25710, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22022437

RESUMO

This article describes the fabrication and use of microfluidic devices for investigating spatial orientation behaviors in nematode worms (Caenorhabditis elegans). Until now, spatial orientation has been studied in freely moving nematodes in which the frequency and nature of encounters with the gradient are uncontrolled experimental variables. In the new devices, the nematode is held in place by a restraint that aligns the longitudinal axis of the body with the border between two laminar fluid streams, leaving the animal's head and tail free to move. The content of the fluid streams can be manipulated to deliver step gradients in space or time. We demonstrate the utility of the device by identifying previously uncharacterized aspects of the behavioral mechanisms underlying chemotaxis, osmotic avoidance, and thermotaxis in this organism. The new devices are readily adaptable to behavioral and imaging studies involving fluid borne stimuli in a wide range of sensory modalities.


Assuntos
Comportamento Animal/fisiologia , Caenorhabditis elegans/fisiologia , Técnicas Analíticas Microfluídicas/métodos , Orientação/fisiologia , Restrição Física , Comportamento Espacial/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Fatores Quimiotáticos/farmacologia , Orientação/efeitos dos fármacos , Concentração Osmolar , Comportamento Espacial/efeitos dos fármacos , Temperatura , Fatores de Tempo
6.
Curr Biol ; 19(12): 996-1004, 2009 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-19523832

RESUMO

BACKGROUND: Even though functional lateralization is a common feature of many nervous systems, it is poorly understood how lateralized neural function is linked to lateralized gene activity. A bilaterally symmetric pair of C. elegans gustatory neurons, ASEL and ASER, senses a number of chemicals in a left/right asymmetric manner and therefore serves as a model to study the genetic basis of functional lateralization. The extent of functional lateralization of the ASE neurons and genes responsible for the left/right asymmetric activity of ASEL and ASER is unknown. RESULTS: We show here that a substantial number of salt ions are sensed in a left/right asymmetric manner and that lateralized salt responses allow the worm to discriminate between distinct salt cues. To identify molecules that may be involved in sensing salt ions and/or transmitting such sensory information, we examined the chemotaxis behavior of animals harboring mutations in eight different receptor-type, transmembrane guanylyl cyclases (encoded by gcy genes), which are expressed in either ASEL (gcy-6, gcy-7, gcy-14), ASER (gcy-1, gcy-4, gcy-5, gcy-22), or ASEL and ASER (gcy-19). Disruption of a particular ASER-expressed gcy gene, gcy-22, results in a broad chemotaxis defect to nearly all salts sensed by ASER, as well as to a left/right asymmetrically sensed amino acid. In contrast, disruption of other gcy genes resulted in highly salt ion-specific chemosensory defects. CONCLUSIONS: Our findings broaden our understanding of lateralities in neural function, provide insights into how this laterality is molecularly encoded, and reveal an unusual multitude of molecules involved in gustatory signal transduction.


Assuntos
Comportamento Animal/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Lateralidade Funcional/fisiologia , Guanilato Ciclase/metabolismo , Paladar/fisiologia , Animais , Caenorhabditis elegans/anatomia & histologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Quimiotaxia/fisiologia , Guanilato Ciclase/genética , Íons/química , Mutação , Neurônios/citologia , Neurônios/fisiologia , Receptores Acoplados a Guanilato Ciclase/genética , Receptores Acoplados a Guanilato Ciclase/metabolismo , Sais/química
7.
Invert Neurosci ; 8(1): 31-9, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18095011

RESUMO

Higher-order projection interneurons that function in more than one behavior have been identified in a number of preparations. In this study, we document that stimulation of cell Tr1, a previously identified trigger interneuron for swimming in the medicinal leech, can also elicit the motor program for crawling in isolated nerve cords. We also show that motor choice is independent of the firing frequency of Tr1 and amount of spiking activity recorded extracellularly at three locations along the ventral nerve cord prior to Tr1 stimulation. On the other hand, during Tr1 stimulation there is a significant difference in the amount of activity elicited in the ventral nerve cord that correlates with the motor program activated. On average, Tr1 stimulation trials that lead to crawling elicit greater amounts of activity than in trials that lead to swimming.


Assuntos
Interneurônios/fisiologia , Sanguessugas/citologia , Sanguessugas/fisiologia , Locomoção/fisiologia , Potenciais de Ação/fisiologia , Animais , Comportamento Animal , Estimulação Física/métodos , Natação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...