Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(12): eadi8594, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38507486

RESUMO

Marine cloud brightening (MCB) is the deliberate injection of aerosol particles into shallow marine clouds to increase their reflection of solar radiation and reduce the amount of energy absorbed by the climate system. From the physical science perspective, the consensus of a broad international group of scientists is that the viability of MCB will ultimately depend on whether observations and models can robustly assess the scale-up of local-to-global brightening in today's climate and identify strategies that will ensure an equitable geographical distribution of the benefits and risks associated with projected regional changes in temperature and precipitation. To address the physical science knowledge gaps required to assess the societal implications of MCB, we propose a substantial and targeted program of research-field and laboratory experiments, monitoring, and numerical modeling across a range of scales.

2.
Proc Natl Acad Sci U S A ; 119(46): e2210481119, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36343255

RESUMO

How clouds respond to anthropogenic sulfate aerosols is one of the largest sources of uncertainty in the radiative forcing of climate over the industrial era. This uncertainty limits our ability to predict equilibrium climate sensitivity (ECS)-the equilibrium global warming following a doubling of atmospheric CO2. Here, we use satellite observations to quantify relationships between sulfate aerosols and low-level clouds while carefully controlling for meteorology. We then combine the relationships with estimates of the change in sulfate concentration since about 1850 to constrain the associated radiative forcing. We estimate that the cloud-mediated radiative forcing from anthropogenic sulfate aerosols is [Formula: see text] W m-2 over the global ocean (95% confidence). This constraint implies that ECS is likely between 2.9 and 4.5 K (66% confidence). Our results indicate that aerosol forcing is less uncertain and ECS is probably larger than the ranges proposed by recent climate assessments.


Assuntos
Clima , Meteorologia , Aerossóis , Sulfatos , Oceanos e Mares
3.
Atmos Chem Phys ; 22(1): 641-674, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35136405

RESUMO

Aerosol-cloud interactions (ACIs) are considered to be the most uncertain driver of present-day radiative forcing due to human activities. The nonlinearity of cloud-state changes to aerosol perturbations make it challenging to attribute causality in observed relationships of aerosol radiative forcing. Using correlations to infer causality can be challenging when meteorological variability also drives both aerosol and cloud changes independently. Natural and anthropogenic aerosol perturbations from well-defined sources provide "opportunistic experiments" (also known as natural experiments) to investigate ACI in cases where causality may be more confidently inferred. These perturbations cover a wide range of locations and spatiotemporal scales, including point sources such as volcanic eruptions or industrial sources, plumes from biomass burning or forest fires, and tracks from individual ships or shipping corridors. We review the different experimental conditions and conduct a synthesis of the available satellite datasets and field campaigns to place these opportunistic experiments on a common footing, facilitating new insights and a clearer understanding of key uncertainties in aerosol radiative forcing. Cloud albedo perturbations are strongly sensitive to background meteorological conditions. Strong liquid water path increases due to aerosol perturbations are largely ruled out by averaging across experiments. Opportunistic experiments have significantly improved process-level understanding of ACI, but it remains unclear how reliably the relationships found can be scaled to the global level, thus demonstrating a need for deeper investigation in order to improve assessments of aerosol radiative forcing and climate change.

4.
Proc Natl Acad Sci U S A ; 117(32): 18998-19006, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32719114

RESUMO

The change in planetary albedo due to aerosol-cloud interactions during the industrial era is the leading source of uncertainty in inferring Earth's climate sensitivity to increased greenhouse gases from the historical record. The variable that controls aerosol-cloud interactions in warm clouds is droplet number concentration. Global climate models demonstrate that the present-day hemispheric contrast in cloud droplet number concentration between the pristine Southern Hemisphere and the polluted Northern Hemisphere oceans can be used as a proxy for anthropogenically driven change in cloud droplet number concentration. Remotely sensed estimates constrain this change in droplet number concentration to be between 8 cm-3 and 24 cm-3 By extension, the radiative forcing since 1850 from aerosol-cloud interactions is constrained to be -1.2 W⋅m-2 to -0.6 W⋅m-2 The robustness of this constraint depends upon the assumption that pristine Southern Ocean droplet number concentration is a suitable proxy for preindustrial concentrations. Droplet number concentrations calculated from satellite data over the Southern Ocean are high in austral summer. Near Antarctica, they reach values typical of Northern Hemisphere polluted outflows. These concentrations are found to agree with several in situ datasets. In contrast, climate models show systematic underpredictions of cloud droplet number concentration across the Southern Ocean. Near Antarctica, where precipitation sinks of aerosol are small, the underestimation by climate models is particularly large. This motivates the need for detailed process studies of aerosol production and aerosol-cloud interactions in pristine environments. The hemispheric difference in satellite estimated cloud droplet number concentration implies preindustrial aerosol concentrations were higher than estimated by most models.

5.
Sci Adv ; 1(6): e1500157, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26601216

RESUMO

Atmospheric aerosols, suspended solid and liquid particles, act as nucleation sites for cloud drop formation, affecting clouds and cloud properties-ultimately influencing the cloud dynamics, lifetime, water path, and areal extent that determine the reflectivity (albedo) of clouds. The concentration N d of droplets in clouds that influences planetary albedo is sensitive to the availability of aerosol particles on which the droplets form. Natural aerosol concentrations affect not only cloud properties themselves but also modulate the sensitivity of clouds to changes in anthropogenic aerosols. It is shown that modeled natural aerosols, principally marine biogenic primary and secondary aerosol sources, explain more than half of the spatiotemporal variability in satellite-observed N d. Enhanced N d is spatially correlated with regions of high chlorophyll a, and the spatiotemporal variability in N d is found to be driven primarily by high concentrations of sulfate aerosol at lower Southern Ocean latitudes (35(o) to 45(o)S) and by organic matter in sea spray aerosol at higher latitudes (45(o) to 55(o)S). Biogenic sources are estimated to increase the summertime mean reflected solar radiation in excess of 10 W m(-2) over parts of the Southern Ocean, which is comparable to the annual mean increases expected from anthropogenic aerosols over heavily polluted regions of the Northern Hemisphere.

6.
J Chem Phys ; 128(18): 184905, 2008 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-18532846

RESUMO

Dynamical properties of short freely jointed and freely rotating chains are studied using molecular dynamics simulations. These results are combined with those of previous studies, and the degree of rheological complexity of the two models is assessed. New results are based on an improved analysis procedure of the rotational relaxation of the second Legendre polynomials of the end-to-end vector in terms of the Kohlrausch-Williams-Watts (KWW) function. Increased accuracy permits the variation of the KWW stretching exponent beta to be tracked over a wide range of state points. The smoothness of beta as a function of packing fraction eta is a testimony both to the accuracy of the analytical methods and the appropriateness of (eta(0)-eta) as a measure of the distance to the ideal glass transition at eta(0). Relatively direct comparison is made with experiment by viewing beta as a function of the KWW relaxation time tau(KWW). The simulation results are found to be typical of small molecular glass formers. Several manifestations of rheological complexity are considered. First, the proportionality of alpha-relaxation times is explored by the comparison of translational to rotational motion (i.e., the Debye-Stokes-Einstein relation), of motion on different length scales (i.e., the Stokes-Einstein relation), and of rotational motion at intermediate times to that at long time. Second, the range of time-temperature superposition master curve behavior is assessed. Third, the variation of beta across state points is tracked. Although no particulate model of a liquid is rigorously rheologically simple, we find freely jointed chains closely approximated this idealization, while freely rotating chains display distinctly complex dynamical features.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...