Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioconjug Chem ; 34(9): 1679-1687, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37657082

RESUMO

Protein arylation has attracted much attention for developing new classes of bioconjugates with improved properties. Here, we have evaluated 2-sulfonylpyrimidines as covalent warheads for the mild, chemoselective, and metal free cysteine S-arylation. 2-Sulfonylpyrimidines react rapidly with cysteine, resulting in stable S-heteroarylated adducts at neutral pH. Fine tuning the heterocyclic core and exocyclic leaving group allowed predictable SNAr reactivity in vitro, covering >9 orders of magnitude. Finally, we achieved fast chemo- and regiospecific arylation of a mutant p53 protein and confirmed arylation sites by protein X-ray crystallography. Hence, we report the first example of a protein site specifically S-arylated with iodo-aromatic motifs. Overall, this study provides the most comprehensive structure-reactivity relationship to date on heteroaryl sulfones and highlights 2-sulfonylpyrimidine as a synthetically tractable and protein compatible covalent motif for targeting reactive cysteines, expanding the arsenal of tunable warheads for modern covalent ligand discovery.


Assuntos
Cisteína , Sulfonas , Proteínas Mutantes , Cristalografia por Raios X
2.
J Med Chem ; 65(10): 7246-7261, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35581674

RESUMO

The canonical Wingless-related integration site signaling pathway plays a critical role in human physiology, and its dysregulation can lead to an array of diseases. ß-Catenin is a multifunctional protein within this pathway and an attractive yet challenging therapeutic target, most notably in oncology. This has stimulated the search for potent small-molecule inhibitors binding directly to the ß-catenin surface to inhibit its protein-protein interactions and downstream signaling. Here, we provide an account of the claimed (and some putative) small-molecule ligands of ß-catenin from the literature. Through in silico analysis, we show that most of these molecules contain promiscuous chemical substructures notorious for interfering with screening assays. Finally, and in line with this analysis, we demonstrate using orthogonal biophysical techniques that none of the examined small molecules bind at the surface of ß-catenin. While shedding doubts on their reported mode of action, this study also reaffirms ß-catenin as a prominent target in drug discovery.


Assuntos
Bibliotecas de Moléculas Pequenas , Via de Sinalização Wnt , beta Catenina , Animais , Fenômenos Biofísicos , Descoberta de Drogas , Humanos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...