Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Public Health (Oxf) ; 46(1): 127-135, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38061776

RESUMO

BACKGROUND: Simulation models are increasingly important for supporting decision-making in public health. However, due to lack of training, many public health professionals remain unfamiliar with constructing simulation models and using their outputs for decision-making. This study contributes to filling this gap by developing a competency framework on simulation model-supported decision-making targeting Master of Public Health education. METHODS: The study combined a literature review, a two-stage online Delphi survey and an online consensus workshop. A draft competency framework was developed based on 28 peer-reviewed publications. A two-stage online Delphi survey involving 15 experts was conducted to refine the framework. Finally, an online consensus workshop, including six experts, evaluated the competency framework and discussed its implementation. RESULTS: The competency framework identified 20 competencies related to stakeholder engagement, problem definition, evidence identification, participatory system mapping, model creation and calibration and the interpretation and dissemination of model results. The expert evaluation recommended differentiating professional profiles and levels of expertise and synergizing with existing course contents to support its implementation. CONCLUSIONS: The competency framework developed in this study is instrumental to including simulation model-supported decision-making in public health training. Future research is required to differentiate expertise levels and develop implementation strategies.


Assuntos
Competência Profissional , Saúde Pública , Humanos , Pessoal de Saúde , Escolaridade
2.
BMJ Glob Health ; 8(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37558271

RESUMO

BACKGROUND: Mathematical modelling has been used extensively to estimate the potential impact of new tuberculosis vaccines, with the majority of existing models assuming that individuals with Mycobacterium tuberculosis (Mtb) infection remain at lifelong risk of tuberculosis disease. Recent research provides evidence that self-clearance of Mtb infection may be common, which may affect the potential impact of new vaccines that only take in infected or uninfected individuals. We explored how the inclusion of self-clearance in models of tuberculosis affects the estimates of vaccine impact in China and India. METHODS: For both countries, we calibrated a tuberculosis model to a scenario without self-clearance and to various scenarios with self-clearance. To account for the current uncertainty in self-clearance properties, we varied the rate of self-clearance, and the level of protection against reinfection in self-cleared individuals. We introduced potential new vaccines in 2025, exploring vaccines that work in uninfected or infected individuals only, or that are effective regardless of infection status, and modelling scenarios with different levels of vaccine efficacy in self-cleared individuals. We then estimated the relative disease incidence reduction in 2050 for each vaccine compared with the no vaccination scenario. FINDINGS: The inclusion of self-clearance increased the estimated relative reductions in incidence in 2050 for vaccines effective only in uninfected individuals, by a maximum of 12% in China and 8% in India. The inclusion of self-clearance increased the estimated impact of vaccines only effective in infected individuals in some scenarios and decreased it in others, by a maximum of 14% in China and 15% in India. As would be expected, the inclusion of self-clearance had minimal impact on estimated reductions in incidence for vaccines that work regardless of infection status. INTERPRETATIONS: Our work suggests that the neglect of self-clearance in mathematical models of tuberculosis vaccines does not result in substantially biased estimates of tuberculosis vaccine impact. It may, however, mean that we are slightly underestimating the relative advantages of vaccines that work in uninfected individuals only compared with those that work in infected individuals.


Assuntos
Mycobacterium tuberculosis , Vacinas contra a Tuberculose , Tuberculose , Humanos , Tuberculose/epidemiologia , Tuberculose/prevenção & controle , Vacinação , Incidência
3.
Artigo em Inglês | MEDLINE | ID: mdl-37502244

RESUMO

In clinical settings where airborne pathogens, such as Mycobacterium tuberculosis, are prevalent, they constitute an important threat to health workers and people accessing healthcare. We report key insights from a 3-year project conducted in primary healthcare clinics in South Africa, alongside other recent tuberculosis infection prevention and control (TB-IPC) research. We discuss the fragmentation of TB-IPC policies and budgets; the characteristics of individuals attending clinics with prevalent pulmonary tuberculosis; clinic congestion and patient flow; clinic design and natural ventilation; and the facility-level determinants of the implementation (or not) of TB-IPC interventions. We present modeling studies that describe the contribution of M. tuberculosis transmission in clinics to the community tuberculosis burden and economic evaluations showing that TB-IPC interventions are highly cost-effective. We argue for a set of changes to TB-IPC, including better coordination of policymaking, clinic decongestion, changes to clinic design and building regulations, and budgeting for enablers to sustain implementation of TB-IPC interventions. Additional research is needed to find the most effective means of improving the implementation of TB-IPC interventions; to develop approaches to screening for prevalent pulmonary tuberculosis that do not rely on symptoms; and to identify groups of patients that can be seen in clinic less frequently.

4.
medRxiv ; 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37090535

RESUMO

Background: Mathematical modelling has been used extensively to estimate the potential impact of new tuberculosis vaccines, with the majority of existing models assuming that individuals with Mycobacterium tuberculosis (Mtb) infection remain at lifelong risk of tuberculosis disease. Recent research provides evidence that self-clearance of Mtb infection may be common, which may affect the potential impact of new vaccines that only take in infected or uninfected individuals. We explored how the inclusion of self-clearance in models of tuberculosis affects the estimates of vaccine impact in China and India. Methods: For both countries, we calibrated a tuberculosis model to a scenario without self-clearance and to various scenarios with self-clearance. To account for the current uncertainty in self-clearance properties, we varied the rate of self-clearance, and the level of protection against reinfection in self-cleared individuals. We introduced potential new vaccines in 2025, exploring vaccines that work in uninfected or infected individuals only, or that are effective regardless of infection status, and modelling scenarios with different levels of vaccine efficacy in self-cleared individuals. We then estimated the relative incidence reduction in 2050 for each vaccine compared to the no vaccination scenario. Findings: The inclusion of self-clearance increased the estimated relative reductions in incidence in 2050 for vaccines effective only in uninfected individuals, by a maximum of 12% in China and 8% in India. The inclusion of self-clearance increased the estimated impact of vaccines only effective in infected individuals in some scenarios and decreased it in others, by a maximum of 14% in China and 15% in India. As would be expected, the inclusion of self-clearance had minimal impact on estimated reductions in incidence for vaccines that work regardless of infection status. Interpretations: Our work suggests that the neglect of self-clearance in mathematical models of tuberculosis vaccines does not result in substantially biased estimates of tuberculosis vaccine impact. It may, however, mean that we are slightly underestimating the relative advantages of vaccines that work in uninfected individuals only compared to those that work in infected individuals.

5.
Lancet Glob Health ; 11(5): e684-e692, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36966785

RESUMO

BACKGROUND: Prevalence surveys show a substantial burden of subclinical (asymptomatic but infectious) tuberculosis, from which individuals can progress, regress, or even persist in a chronic disease state. We aimed to quantify these pathways across the spectrum of tuberculosis disease. METHODS: We created a deterministic framework of untreated tuberculosis disease with progression and regression between three states of pulmonary tuberculosis disease: minimal (non-infectious), subclinical (asymptomatic but infectious), and clinical (symptomatic and infectious). We obtained data from a previous systematic review of prospective and retrospective studies that followed and recorded the disease state of individuals with tuberculosis in a cohort without treatment. These data were considered in a Bayesian framework, enabling quantitative estimation of tuberculosis disease pathways with rates of transition between states and 95% uncertainty intervals (UIs). FINDINGS: We included 22 studies with data from 5942 individuals in our analysis. Our model showed that after 5 years, 40% (95% UI 31·3-48·0) of individuals with prevalent subclinical disease at baseline recover and 18% (13·3-24·0) die from tuberculosis, with 14% (9·9-19·2) still having infectious disease, and the remainder with minimal disease at risk of re-progression. Over 5 years, 50% (40·0-59·1) of individuals with subclinical disease at baseline never develop symptoms. For those with clinical disease at baseline, 46% (38·3-52·2) die and 20% (15·2-25·8) recover from tuberculosis, with the remainder being in or transitioning between the three disease states after 5 years. We estimated the 10-year mortality of people with untreated prevalent infectious tuberculosis to be 37% (30·5-45·4). INTERPRETATION: For people with subclinical tuberculosis, classic clinical disease is neither an inevitable nor an irreversible outcome. As such, reliance on symptom-based screening means a large proportion of people with infectious disease might never be detected. FUNDING: TB Modelling and Analysis Consortium and European Research Council.


Assuntos
Doenças Transmissíveis , Tuberculose Pulmonar , Tuberculose , Humanos , Estudos Retrospectivos , Teorema de Bayes , Tuberculose Pulmonar/epidemiologia , Tuberculose Pulmonar/diagnóstico , Tuberculose/epidemiologia
6.
Epidemics ; 43: 100678, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36913805

RESUMO

Infectious disease models are widely used by epidemiologists to improve the understanding of transmission dynamics and disease natural history, and to predict the possible effects of interventions. As the complexity of such models increases, however, it becomes increasingly challenging to robustly calibrate them to empirical data. History matching with emulation is a calibration method that has been successfully applied to such models, but has not been widely used in epidemiology partly due to the lack of available software. To address this issue, we developed a new, user-friendly R package hmer to simply and efficiently perform history matching with emulation. In this paper, we demonstrate the first use of hmer for calibrating a complex deterministic model for the country-level implementation of tuberculosis vaccines to 115 low- and middle-income countries. The model was fit to 9-13 target measures, by varying 19-22 input parameters. Overall, 105 countries were successfully calibrated. Among the remaining countries, hmer visualisation tools, combined with derivative emulation methods, provided strong evidence that the models were misspecified and could not be calibrated to the target ranges. This work shows that hmer can be used to simply and rapidly calibrate a complex model to data from over 100 countries, making it a useful addition to the epidemiologist's calibration tool-kit.


Assuntos
Doenças Transmissíveis , Tuberculose , Humanos , Calibragem , Tuberculose/epidemiologia , Doenças Transmissíveis/epidemiologia , Software
7.
BMJ Glob Health ; 8(2)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36792227

RESUMO

INTRODUCTION: Nosocomial Mycobacterium tuberculosis (Mtb) transmission substantially impacts health workers, patients and communities. Guidelines for tuberculosis infection prevention and control (TB IPC) exist but implementation in many settings remains suboptimal. Evidence is needed on cost-effective investments to prevent Mtb transmission that are feasible in routine clinic environments. METHODS: A set of TB IPC interventions was codesigned with local stakeholders using system dynamics modelling techniques that addressed both core activities and enabling actions to support implementation. An economic evaluation of these interventions was conducted at two clinics in KwaZulu-Natal, employing agent-based models of Mtb transmission within the clinics and in their catchment populations. Intervention costs included the costs of the enablers (eg, strengthened supervision, community sensitisation) identified by stakeholders to ensure uptake and adherence. RESULTS: All intervention scenarios modelled, inclusive of the relevant enablers, cost less than US$200 per disability-adjusted life-year (DALY) averted and were very cost-effective in comparison to South Africa's opportunity cost-based threshold (US$3200 per DALY averted). Two interventions, building modifications to improve ventilation and maximising use of the existing Central Chronic Medicines Dispensing and Distribution system to reduce the number of clinic attendees, were found to be cost saving over the 10-year model time horizon. Incremental cost-effectiveness ratios were sensitive to assumptions on baseline clinic ventilation rates, the prevalence of infectious TB in clinic attendees and future HIV incidence but remained highly cost-effective under all uncertainty analysis scenarios. CONCLUSION: TB IPC interventions in clinics, including the enabling actions to ensure their feasibility, afford very good value for money and should be prioritised for implementation within the South African health system.


Assuntos
Infecções por HIV , Mycobacterium tuberculosis , Tuberculose , Humanos , Análise Custo-Benefício , África do Sul/epidemiologia , Infecções por HIV/epidemiologia , Tuberculose/epidemiologia , Tuberculose/prevenção & controle
8.
Emerg Infect Dis ; 28(10): 2016-2026, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36048756

RESUMO

Data on social contact patterns are widely used to parameterize age-mixing matrices in mathematical models of infectious diseases. Most studies focus on close contacts only (i.e., persons spoken with face-to-face). This focus may be appropriate for studies of droplet and short-range aerosol transmission but neglects casual or shared air contacts, who may be at risk from airborne transmission. Using data from 2 provinces in South Africa, we estimated age mixing patterns relevant for droplet transmission, nonsaturating airborne transmission, and Mycobacterium tuberculosis transmission, an airborne infection where saturation of household contacts occurs. Estimated contact patterns by age did not vary greatly between the infection types, indicating that widespread use of close contact data may not be resulting in major inaccuracies. However, contact in persons >50 years of age was lower when we considered casual contacts, and therefore the contribution of older age groups to airborne transmission may be overestimated.


Assuntos
Mycobacterium tuberculosis , Aerossóis e Gotículas Respiratórios , Aerossóis , Modelos Teóricos , África do Sul/epidemiologia
9.
BMJ Glob Health ; 7(4)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35396264

RESUMO

BACKGROUND: There is a high risk of Mycobacterium tuberculosis (Mtb) transmission in healthcare facilities in high burden settings. WHO guidelines on tuberculosis (TB) infection prevention and control (IPC) recommend a range of measures to reduce transmission in healthcare settings. These were evaluated primarily based on evidence for their effects on transmission to healthcare workers in hospitals. To estimate the overall impact of IPC interventions, it is necessary to also consider their impact on community-wide TB incidence and mortality. METHODS: We developed an individual-based model of Mtb transmission in households, primary healthcare (PHC) clinics, and all other congregate settings. The model was parameterised using data from a high HIV prevalence community in South Africa, including data on social contact by setting, by sex, age, and HIV/antiretroviral therapy status; and data on TB prevalence in clinic attendees and the general population. We estimated the proportion of disease in adults that resulted from transmission in PHC clinics, and the impact of a range of IPC interventions in clinics on community-wide TB. RESULTS: We estimate that 7.6% (plausible range 3.9%-13.9%) of non-multidrug resistant and multidrug resistant TB in adults resulted directly from transmission in PHC clinics in the community in 2019. The proportion is higher in HIV-positive people, at 9.3% (4.8%-16.8%), compared with 5.3% (2.7%-10.1%) in HIV-negative people. We estimate that IPC interventions could reduce incident TB cases in the community in 2021-2030 by 3.4%-8.0%, and deaths by 3.0%-7.2%. CONCLUSIONS: A non-trivial proportion of TB results from transmission in clinics in the study community, particularly in HIV-positive people. Implementing IPC interventions could lead to moderate reductions in disease burden. We recommend that IPC measures in clinics should be implemented for their benefits to staff and patients, but also for their likely effects on TB incidence and mortality in the surrounding community.


Assuntos
Infecções por HIV , Tuberculose , Adulto , Infecções por HIV/epidemiologia , Infecções por HIV/prevenção & controle , Humanos , Incidência , Atenção Primária à Saúde , África do Sul/epidemiologia , Tuberculose/epidemiologia , Tuberculose/prevenção & controle
10.
PLOS Glob Public Health ; 2(7): e0000684, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36962412

RESUMO

Transmission of respiratory pathogens, such as Mycobacterium tuberculosis and severe acute respiratory syndrome coronavirus 2, is more likely during close, prolonged contact and when sharing a poorly ventilated space. Reducing overcrowding of health facilities is a recognised infection prevention and control (IPC) strategy; reliable estimates of waiting times and 'patient flow' would help guide implementation. As part of the Umoya omuhle study, we aimed to estimate clinic visit duration, time spent indoors versus outdoors, and occupancy density of waiting rooms in clinics in KwaZulu-Natal (KZN) and Western Cape (WC), South Africa. We used unique barcodes to track attendees' movements in 11 clinics, multiple imputation to estimate missing arrival and departure times, and mixed-effects linear regression to examine associations with visit duration. 2,903 attendees were included. Median visit duration was 2 hours 36 minutes (interquartile range [IQR] 01:36-3:43). Longer mean visit times were associated with being female (13.5 minutes longer than males; p<0.001) and attending with a baby (18.8 minutes longer than those without; p<0.01), and shorter mean times with later arrival (14.9 minutes shorter per hour after 0700; p<0.001). Overall, attendees spent more of their time indoors (median 95.6% [IQR 46-100]) than outdoors (2.5% [IQR 0-35]). Attendees at clinics with outdoor waiting areas spent a greater proportion (median 13.7% [IQR 1-75]) of their time outdoors. In two clinics in KZN (no appointment system), occupancy densities of ~2.0 persons/m2 were observed in smaller waiting rooms during busy periods. In one clinic in WC (appointment system, larger waiting areas), occupancy density did not exceed 1.0 persons/m2 despite higher overall attendance. In this study, longer waiting times were associated with early arrival, being female, and attending with a young child. Occupancy of waiting rooms varied substantially between rooms and over the clinic day. Light-touch estimation of occupancy density may help guide interventions to improve patient flow.

11.
PLOS Glob Public Health ; 2(11): e0000603, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36962521

RESUMO

Healthcare facilities are important sites for the transmission of pathogens spread via bioaerosols, such as Mycobacterium tuberculosis. Natural ventilation can play an important role in reducing this transmission. We aimed to measure rates of natural ventilation in clinics in KwaZulu-Natal and Western Cape provinces, South Africa, then use these measurements to estimate Mycobacterium tuberculosis transmission risk. We measured ventilation in clinic spaces using a tracer-gas release method. In spaces where this was not possible, we estimated ventilation using data on indoor and outdoor carbon dioxide levels. Ventilation was measured i) under usual conditions and ii) with all windows and doors fully open. Under various assumptions about infectiousness and duration of exposure, measured absolute ventilation rates were related to risk of Mycobacterium tuberculosis transmission using the Wells-Riley Equation. In 2019, we obtained ventilation measurements in 33 clinical spaces in 10 clinics: 13 consultation rooms, 16 waiting areas and 4 other clinical spaces. Under usual conditions, the absolute ventilation rate was much higher in waiting rooms (median 1769 m3/hr, range 338-4815 m3/hr) than in consultation rooms (median 197 m3/hr, range 0-1451 m3/hr). When compared with usual conditions, fully opening existing doors and windows resulted in a median two-fold increase in ventilation. Using standard assumptions about infectiousness, we estimated that a health worker would have a 24.8% annual risk of becoming infected with Mycobacterium tuberculosis, and that a patient would have an 0.1% risk of becoming infected per visit. Opening existing doors and windows and rearranging patient pathways to preferentially use better ventilated clinic spaces result in important reductions in Mycobacterium tuberculosis transmission risk. However, unless combined with other tuberculosis infection prevention and control interventions, these changes are insufficient to reduce risk to health workers, and other highly exposed individuals, to acceptable levels.

12.
BMJ Glob Health ; 6(10)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34697087

RESUMO

BACKGROUND: Elevated rates of tuberculosis in healthcare workers demonstrate the high rate of Mycobacterium tuberculosis (Mtb) transmission in health facilities in high-burden settings. In the context of a project taking a whole systems approach to tuberculosis infection prevention and control (IPC), we aimed to evaluate the potential impact of conventional and novel IPC measures on Mtb transmission to patients and other clinic attendees. METHODS: An individual-based model of patient movements through clinics, ventilation in waiting areas, and Mtb transmission was developed, and parameterised using empirical data from eight clinics in two provinces in South Africa. Seven interventions-codeveloped with health professionals and policy-makers-were simulated: (1) queue management systems with outdoor waiting areas, (2) ultraviolet germicidal irradiation (UVGI) systems, (3) appointment systems, (4) opening windows and doors, (5) surgical mask wearing by clinic attendees, (6) simple clinic retrofits and (7) increased coverage of long antiretroviral therapy prescriptions and community medicine collection points through the Central Chronic Medicine Dispensing and Distribution (CCMDD) service. RESULTS: In the model, (1) outdoor waiting areas reduced the transmission to clinic attendees by 83% (IQR 76%-88%), (2) UVGI by 77% (IQR 64%-85%), (3) appointment systems by 62% (IQR 45%-75%), (4) opening windows and doors by 55% (IQR 25%-72%), (5) masks by 47% (IQR 42%-50%), (6) clinic retrofits by 45% (IQR 16%-64%) and (7) increasing the coverage of CCMDD by 22% (IQR 12%-32%). CONCLUSIONS: The majority of the interventions achieved median reductions in the rate of transmission to clinic attendees of at least 45%, meaning that a range of highly effective intervention options are available, that can be tailored to the local context. Measures that are not traditionally considered to be IPC interventions, such as appointment systems, may be as effective as more traditional IPC measures, such as mask wearing.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Pessoal de Saúde , Humanos , Controle de Infecções , África do Sul/epidemiologia , Tuberculose/epidemiologia , Tuberculose/prevenção & controle
13.
BMC Infect Dis ; 21(1): 928, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34496771

RESUMO

BACKGROUND: South Africa implemented rapid and strict physical distancing regulations to minimize SARS-CoV-2 epidemic spread. Evidence on the impact of such measures on interpersonal contact in rural and lower-income settings is limited. METHODS: We compared population-representative social contact surveys conducted in the same rural KwaZulu-Natal location once in 2019 and twice in mid-2020. Respondents reported characteristics of physical and conversational ('close interaction') contacts over 24 hours. We built age-mixing matrices and estimated the proportional change in the SARS-CoV-2 reproduction number (R0). Respondents also reported counts of others present at locations visited and transport used, from which we evaluated change in potential exposure to airborne infection due to shared indoor space ('shared air'). RESULTS: Respondents in March-December 2019 (n = 1704) reported a mean of 7.4 close interaction contacts and 196 shared air person-hours beyond their homes. Respondents in June-July 2020 (n = 216), as the epidemic peaked locally, reported 4.1 close interaction contacts and 21 shared air person-hours outside their home, with significant declines in others' homes and public spaces. Adults aged over 50 had fewer close contacts with others over 50, but little change in contact with 15-29 year olds, reflecting ongoing contact within multigenerational households. We estimate potential R0 fell by 42% (95% plausible range 14-59%) between 2019 and June-July 2020. CONCLUSIONS: Extra-household social contact fell substantially following imposition of Covid-19 distancing regulations in rural South Africa. Ongoing contact within intergenerational households highlighted a potential limitation of social distancing measures in protecting older adults.


Assuntos
COVID-19 , Epidemias , Idoso , Estudos Transversais , Humanos , Distanciamento Físico , SARS-CoV-2 , África do Sul/epidemiologia
14.
PLoS One ; 16(6): e0253096, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34166388

RESUMO

BACKGROUND: In light of the role that airborne transmission plays in the spread of SARS-CoV-2, as well as the ongoing high global mortality from well-known airborne diseases such as tuberculosis and measles, there is an urgent need for practical ways of identifying congregate spaces where low ventilation levels contribute to high transmission risk. Poorly ventilated clinic spaces in particular may be high risk, due to the presence of both infectious and susceptible people. While relatively simple approaches to estimating ventilation rates exist, the approaches most frequently used in epidemiology cannot be used where occupancy varies, and so cannot be reliably applied in many of the types of spaces where they are most needed. METHODS: The aim of this study was to demonstrate the use of a non-steady state method to estimate the absolute ventilation rate, which can be applied in rooms where occupancy levels vary. We used data from a room in a primary healthcare clinic in a high TB and HIV prevalence setting, comprising indoor and outdoor carbon dioxide measurements and head counts (by age), taken over time. Two approaches were compared: approach 1 using a simple linear regression model and approach 2 using an ordinary differential equation model. RESULTS: The absolute ventilation rate, Q, using approach 1 was 2407 l/s [95% CI: 1632-3181] and Q from approach 2 was 2743 l/s [95% CI: 2139-4429]. CONCLUSIONS: We demonstrate two methods that can be used to estimate ventilation rate in busy congregate settings, such as clinic waiting rooms. Both approaches produced comparable results, however the simple linear regression method has the advantage of not requiring room volume measurements. These methods can be used to identify poorly-ventilated spaces, allowing measures to be taken to reduce the airborne transmission of pathogens such as Mycobacterium tuberculosis, measles, and SARS-CoV-2.


Assuntos
Microbiologia do Ar , Poluição do Ar em Ambientes Fechados/prevenção & controle , COVID-19/prevenção & controle , COVID-19/transmissão , Modelos Biológicos , SARS-CoV-2 , Ventilação , COVID-19/epidemiologia , Humanos
15.
PLoS Med ; 18(4): e1003566, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33901173

RESUMO

BACKGROUND: Two weeks' isolation is widely recommended for people commencing treatment for pulmonary tuberculosis (TB). The evidence that this corresponds to clearance of potentially infectious tuberculous mycobacteria in sputum is not well established. This World Health Organization-commissioned review investigated sputum sterilisation dynamics during TB treatment. METHODS AND FINDINGS: For the main analysis, 2 systematic literature searches of OvidSP MEDLINE, Embase, and Global Health, and EBSCO CINAHL Plus were conducted to identify studies with data on TB infectiousness (all studies to search date, 1 December 2017) and all randomised controlled trials (RCTs) for drug-susceptible TB (from 1 January 1990 to search date, 20 February 2018). Included articles reported on patients receiving effective treatment for culture-confirmed drug-susceptible pulmonary TB. The outcome of interest was sputum bacteriological conversion: the proportion of patients having converted by a defined time point or a summary measure of time to conversion, assessed by smear or culture. Any study design with 10 or more particpants was considered. Record sifting and data extraction were performed in duplicate. Random effects meta-analyses were performed. A narrative summary additionally describes the results of a systematic search for data evaluating infectiousness from humans to experimental animals (PubMed, all studies to 27 March 2018). Other evidence on duration of infectiousness-including studies reporting on cough dynamics, human tuberculin skin test conversion, or early bactericidal activity of TB treatments-was outside the scope of this review. The literature search was repeated on 22 November 2020, at the request of the editors, to identify studies published after the previous censor date. Four small studies reporting 3 different outcome measures were identified, which included no data that would alter the findings of the review; they are not included in the meta-analyses. Of 5,290 identified records, 44 were included. Twenty-seven (61%) were RCTs and 17 (39%) were cohort studies. Thirteen studies (30%) reported data from Africa, 12 (27%) from Asia, 6 (14%) from South America, 5 (11%) from North America, and 4 (9%) from Europe. Four studies reported data from multiple continents. Summary estimates suggested smear conversion in 9% of patients at 2 weeks (95% CI 3%-24%, 1 single study [N = 1]), and 82% of patients at 2 months of treatment (95% CI 78%-86%, N = 10). Among baseline smear-positive patients, solid culture conversion occurred by 2 weeks in 5% (95% CI 0%-14%, N = 2), increasing to 88% at 2 months (95% CI 84%-92%, N = 20). At equivalent time points, liquid culture conversion was achieved in 3% (95% CI 1%-16%, N = 1) and 59% (95% CI 47%-70%, N = 8). Significant heterogeneity was observed. Further interrogation of the data to explain this heterogeneity was limited by the lack of disaggregation of results, including by factors such as HIV status, baseline smear status, and the presence or absence of lung cavitation. CONCLUSIONS: This systematic review found that most patients remained culture positive at 2 weeks of TB treatment, challenging the view that individuals are not infectious after this interval. Culture positivity is, however, only 1 component of infectiousness, with reduced cough frequency and aerosol generation after TB treatment initiation likely to also be important. Studies that integrate our findings with data on cough dynamics could provide a more complete perspective on potential transmission of Mycobacterium tuberculosis by individuals on treatment. TRIAL REGISTRATION: Systematic review registration: PROSPERO 85226.


Assuntos
Mycobacterium tuberculosis/fisiologia , Escarro/microbiologia , Tuberculose Pulmonar/terapia , Humanos
16.
medRxiv ; 2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33300009

RESUMO

Background: South Africa implemented rapid and strict physical distancing regulations to minimize SARS-CoV-2 epidemic spread. Evidence on the impact of such measures on interpersonal contact in rural and lower-income settings is limited. Methods: We compared population-representative social contact surveys conducted in the same rural KwaZulu-Natal location once in 2019 and twice in mid-2020. Respondents reported characteristics of physical and conversational ('close interaction') contacts over 24 hours. We built age-mixing matrices and estimated the proportional change in the SARS-CoV-2 reproduction number (R0). Respondents also reported counts of others present at locations visited and transport used, from which we evaluated change in potential exposure to airborne infection due to shared indoor space ('shared air'). Results: Respondents in March-December 2019 (n=1704) reported a mean of 7.4 close interaction contacts and 196 shared air person-hours beyond their homes. Respondents in June-July 2020 (n=216), as the epidemic peaked locally, reported 4.1 close interaction contacts and 21 shared air person-hours outside their home, with significant declines in others' homes and public spaces. Adults aged over 50 had fewer close contacts with others over 50, but little change in contact with 15-29 year olds, reflecting ongoing contact within multigenerational households. We estimate potential R0 fell by 42% (95% plausible range 14-59%) between 2019 and June-July 2020. Discussion: Extra-household social contact fell substantially following imposition of Covid-19 distancing regulations in rural South Africa. Ongoing contact within intergenerational households highlighted the limitation of social distancing measures in protecting older adults. Funding: Wellcome Trust, UKRI, DFID, European Union.

17.
BMC Med ; 18(1): 316, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-33012285

RESUMO

BACKGROUND: Many low- and middle-income countries have implemented control measures against coronavirus disease 2019 (COVID-19). However, it is not clear to what extent these measures explain the low numbers of recorded COVID-19 cases and deaths in Africa. One of the main aims of control measures is to reduce respiratory pathogen transmission through direct contact with others. In this study, we collect contact data from residents of informal settlements around Nairobi, Kenya, to assess if control measures have changed contact patterns, and estimate the impact of changes on the basic reproduction number (R0). METHODS: We conducted a social contact survey with 213 residents of five informal settlements around Nairobi in early May 2020, 4 weeks after the Kenyan government introduced enhanced physical distancing measures and a curfew between 7 pm and 5 am. Respondents were asked to report all direct physical and non-physical contacts made the previous day, alongside a questionnaire asking about the social and economic impact of COVID-19 and control measures. We examined contact patterns by demographic factors, including socioeconomic status. We described the impact of COVID-19 and control measures on income and food security. We compared contact patterns during control measures to patterns from non-pandemic periods to estimate the change in R0. RESULTS: We estimate that control measures reduced physical contacts by 62% and non-physical contacts by either 63% or 67%, depending on the pre-COVID-19 comparison matrix used. Masks were worn by at least one person in 92% of contacts. Respondents in the poorest socioeconomic quintile reported 1.5 times more contacts than those in the richest. Eighty-six percent of respondents reported a total or partial loss of income due to COVID-19, and 74% reported eating less or skipping meals due to having too little money for food. CONCLUSION: COVID-19 control measures have had a large impact on direct contacts and therefore transmission, but have also caused considerable economic and food insecurity. Reductions in R0 are consistent with the comparatively low epidemic growth in Kenya and other sub-Saharan African countries that implemented similar, early control measures. However, negative and inequitable impacts on economic and food security may mean control measures are not sustainable in the longer term.


Assuntos
Controle de Doenças Transmissíveis , Infecções por Coronavirus , Transmissão de Doença Infecciosa/prevenção & controle , Relações Interpessoais , Pandemias , Pneumonia Viral , Adulto , Betacoronavirus , COVID-19 , Controle de Doenças Transmissíveis/métodos , Controle de Doenças Transmissíveis/organização & administração , Controle de Doenças Transmissíveis/estatística & dados numéricos , Infecções por Coronavirus/economia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/prevenção & controle , Feminino , Humanos , Quênia/epidemiologia , Masculino , Avaliação de Resultados em Cuidados de Saúde , Pandemias/economia , Pandemias/prevenção & controle , Pneumonia Viral/economia , Pneumonia Viral/epidemiologia , Pneumonia Viral/prevenção & controle , Pobreza/estatística & dados numéricos , SARS-CoV-2 , Isolamento Social , Fatores Socioeconômicos , Inquéritos e Questionários
19.
Infect Dis Poverty ; 9(1): 56, 2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32450916

RESUMO

Infection prevention and control (IPC) measures to reduce transmission of drug-resistant and drug-sensitive tuberculosis (TB) in health facilities are well described but poorly implemented. The implementation of TB IPC has been assessed primarily through quantitative and structured approaches that treat administrative, environmental, and personal protective measures as discrete entities. We present an on-going project entitled Umoya omuhle ("good air"), conducted in two provinces of South Africa, that adopts an interdisciplinary, 'whole systems' approach to problem analysis and intervention development for reducing nosocomial transmission of Mycobacterium tuberculosis (Mtb) through improved IPC. We suggest that TB IPC represents a complex intervention that is delivered within a dynamic context shaped by policy guidelines, health facility space, infrastructure, organisation of care, and management culture. Methods drawn from epidemiology, anthropology, and health policy and systems research enable rich contextual analysis of how nosocomial Mtb transmission occurs, as well as opportunities to address the problem holistically. A 'whole systems' approach can identify leverage points within the health facility infrastructure and organisation of care that can inform the design of interventions to reduce the risk of nosocomial Mtb transmission.


Assuntos
Controle de Infecções/métodos , Prevenção Primária/métodos , Tuberculose/prevenção & controle , Humanos , Mycobacterium tuberculosis/fisiologia , África do Sul , Análise de Sistemas
20.
Epidemics ; 28: 100339, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30910644

RESUMO

INTRODUCTION: Age-mixing patterns can have substantial effects on infectious disease dynamics and intervention effects. Data on close contacts (people spoken to and/or touched) are often used to estimate age-mixing. These are not the only relevant contacts for airborne infections such as tuberculosis, where transmission can occur between anybody 'sharing air' indoors. Directly collecting data on age-mixing patterns between casual contacts (shared indoor space, but not 'close') is difficult however. We demonstrate a method for indirectly estimating age-mixing patterns between casual indoor contacts from social contact data. METHODS: We estimated age-mixing patterns between close, casual, and all contacts using data from a social contact survey in South Africa. The age distribution of casual contacts in different types of location was estimated from the reported time spent in the location type by respondents in each age group. RESULTS: Patterns of age-mixing calculated from contact numbers were similar between close and all contacts, however patterns of age-mixing calculated from contact time were more age-assortative in all contacts than in close contacts. There was also more variation by age group in total numbers of casual and all contacts, than in total numbers of close contacts. Estimates were robust to sensitivity analyses. CONCLUSIONS: Patterns of age-mixing can be estimated for all contacts using data that can be easily collected as part of social contact surveys or time-use surveys, and may differ from patterns between close contacts.


Assuntos
Doenças Transmissíveis/epidemiologia , Doenças Transmissíveis/transmissão , Comportamento Social , Tuberculose/epidemiologia , Tuberculose/transmissão , Adolescente , Adulto , Distribuição por Idade , Algoritmos , Criança , Pré-Escolar , Busca de Comunicante , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , África do Sul/epidemiologia , Inquéritos e Questionários , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...