Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Nat Commun ; 15(1): 907, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383456

RESUMO

Post-infectious myalgic encephalomyelitis/chronic fatigue syndrome (PI-ME/CFS) is a disabling disorder, yet the clinical phenotype is poorly defined, the pathophysiology is unknown, and no disease-modifying treatments are available. We used rigorous criteria to recruit PI-ME/CFS participants with matched controls to conduct deep phenotyping. Among the many physical and cognitive complaints, one defining feature of PI-ME/CFS was an alteration of effort preference, rather than physical or central fatigue, due to dysfunction of integrative brain regions potentially associated with central catechol pathway dysregulation, with consequences on autonomic functioning and physical conditioning. Immune profiling suggested chronic antigenic stimulation with increase in naïve and decrease in switched memory B-cells. Alterations in gene expression profiles of peripheral blood mononuclear cells and metabolic pathways were consistent with cellular phenotypic studies and demonstrated differences according to sex. Together these clinical abnormalities and biomarker differences provide unique insight into the underlying pathophysiology of PI-ME/CFS, which may guide future intervention.


Assuntos
Doenças Transmissíveis , Síndrome de Fadiga Crônica , Humanos , Síndrome de Fadiga Crônica/metabolismo , Leucócitos Mononucleares/metabolismo , Doenças Transmissíveis/metabolismo , Biomarcadores/metabolismo , Fenótipo
2.
Cell ; 186(9): 1846-1862.e26, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37028428

RESUMO

The use of probiotics by cancer patients is increasing, including among those undergoing immune checkpoint inhibitor (ICI) treatment. Here, we elucidate a critical microbial-host crosstalk between probiotic-released aryl hydrocarbon receptor (AhR) agonist indole-3-aldehyde (I3A) and CD8 T cells within the tumor microenvironment that potently enhances antitumor immunity and facilitates ICI in preclinical melanoma. Our study reveals that probiotic Lactobacillus reuteri (Lr) translocates to, colonizes, and persists within melanoma, where via its released dietary tryptophan catabolite I3A, it locally promotes interferon-γ-producing CD8 T cells, thereby bolstering ICI. Moreover, Lr-secreted I3A was both necessary and sufficient to drive antitumor immunity, and loss of AhR signaling within CD8 T cells abrogated Lr's antitumor effects. Further, a tryptophan-enriched diet potentiated both Lr- and ICI-induced antitumor immunity, dependent on CD8 T cell AhR signaling. Finally, we provide evidence for a potential role of I3A in promoting ICI efficacy and survival in advanced melanoma patients.


Assuntos
Limosilactobacillus reuteri , Melanoma , Microambiente Tumoral , Humanos , Dieta , Inibidores de Checkpoint Imunológico , Limosilactobacillus reuteri/metabolismo , Melanoma/terapia , Triptofano/metabolismo , Linfócitos T CD8-Positivos/imunologia , Receptores de Hidrocarboneto Arílico/agonistas
3.
Oncotarget ; 13: 876-889, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875611

RESUMO

Cancer immunotherapy has significantly improved patient survival. Yet, half of patients do not respond to immunotherapy. Gut microbiomes have been linked to clinical responsiveness of melanoma patients on immunotherapies; however, different taxa have been associated with response status with implicated taxa inconsistent between studies. We used a tumor-agnostic approach to find common gut microbiome features of response among immunotherapy patients with different advanced stage cancers. A combined meta-analysis of 16S rRNA gene sequencing data from our mixed tumor cohort and three published immunotherapy gut microbiome datasets from different melanoma patient cohorts found certain gut bacterial taxa correlated with immunotherapy response status regardless of tumor type. Using multivariate selbal analysis, we identified two separate groups of bacterial genera associated with responders versus non-responders. Statistical models of gut microbiome community features showed robust prediction accuracy of immunotherapy response in amplicon sequencing datasets and in cross-sequencing platform validation with shotgun metagenomic datasets. Results suggest baseline gut microbiome features may be predictive of clinical outcomes in oncology patients on immunotherapies, and some of these features may be generalizable across different tumor types, patient cohorts, and sequencing platforms. Findings demonstrate how machine learning models can reveal microbiome-immunotherapy interactions that may ultimately improve cancer patient outcomes.


Assuntos
Microbioma Gastrointestinal , Melanoma , Bactérias/genética , Microbioma Gastrointestinal/genética , Humanos , Imunoterapia , Aprendizado de Máquina , Melanoma/terapia , RNA Ribossômico 16S/genética
4.
Nat Med ; 28(3): 545-556, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35228752

RESUMO

Ample evidence indicates that the gut microbiome is a tumor-extrinsic factor associated with antitumor response to anti-programmed cell death protein-1 (PD-1) therapy, but inconsistencies exist between published microbial signatures associated with clinical outcomes. To resolve this, we evaluated a new melanoma cohort, along with four published datasets. Time-to-event analysis showed that baseline microbiota composition was optimally associated with clinical outcome at approximately 1 year after initiation of treatment. Meta-analysis and other bioinformatic analyses of the combined data show that bacteria associated with favorable response are confined within the Actinobacteria phylum and the Lachnospiraceae/Ruminococcaceae families of Firmicutes. Conversely, Gram-negative bacteria were associated with an inflammatory host intestinal gene signature, increased blood neutrophil-to-lymphocyte ratio, and unfavorable outcome. Two microbial signatures, enriched for Lachnospiraceae spp. and Streptococcaceae spp., were associated with favorable and unfavorable clinical response, respectively, and with distinct immune-related adverse effects. Despite between-cohort heterogeneity, optimized all-minus-one supervised learning algorithms trained on batch-corrected microbiome data consistently predicted outcomes to programmed cell death protein-1 therapy in all cohorts. Gut microbial communities (microbiotypes) with nonuniform geographical distribution were associated with favorable and unfavorable outcomes, contributing to discrepancies between cohorts. Our findings shed new light on the complex interaction between the gut microbiome and response to cancer immunotherapy, providing a roadmap for future studies.


Assuntos
Microbioma Gastrointestinal , Melanoma , Microbiota , Bactérias/genética , Microbioma Gastrointestinal/genética , Humanos , Imunoterapia/efeitos adversos , Melanoma/tratamento farmacológico
5.
Science ; 374(6575): 1632-1640, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34941392

RESUMO

Gut bacteria modulate the response to immune checkpoint blockade (ICB) treatment in cancer, but the effect of diet and supplements on this interaction is not well studied. We assessed fecal microbiota profiles, dietary habits, and commercially available probiotic supplement use in melanoma patients and performed parallel preclinical studies. Higher dietary fiber was associated with significantly improved progression-free survival in 128 patients on ICB, with the most pronounced benefit observed in patients with sufficient dietary fiber intake and no probiotic use. Findings were recapitulated in preclinical models, which demonstrated impaired treatment response to anti­programmed cell death 1 (anti­PD-1)­based therapy in mice receiving a low-fiber diet or probiotics, with a lower frequency of interferon-γ­positive cytotoxic T cells in the tumor microenvironment. Together, these data have clinical implications for patients receiving ICB for cancer.


Assuntos
Fibras na Dieta , Microbioma Gastrointestinal , Inibidores de Checkpoint Imunológico/uso terapêutico , Melanoma/terapia , Probióticos , Animais , Estudos de Coortes , Ácidos Graxos Voláteis/análise , Transplante de Microbiota Fecal , Fezes/química , Fezes/microbiologia , Feminino , Humanos , Imunoterapia , Masculino , Melanoma/imunologia , Melanoma/microbiologia , Melanoma Experimental/imunologia , Melanoma Experimental/microbiologia , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos C57BL , Intervalo Livre de Progressão , Linfócitos T
6.
Science ; 374(6564): 154-155, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34618567

RESUMO

Testosterone-synthetizing gut bacteria drive resistance to therapy.


Assuntos
Neoplasias da Próstata , Bactérias , Humanos , Masculino
7.
Nat Metab ; 3(8): 1042-1057, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34417593

RESUMO

Obesity and its consequences are among the greatest challenges in healthcare. The gut microbiome is recognized as a key factor in the pathogenesis of obesity. Using a mouse model, we show here that a wild-derived microbiome protects against excessive weight gain, severe fatty liver disease and metabolic syndrome during a 10-week course of high-fat diet. This phenotype is transferable only during the first weeks of life. In adult mice, neither transfer nor severe disturbance of the wild-type microbiome modifies the metabolic response to a high-fat diet. The protective phenotype is associated with increased secretion of metabolic hormones and increased energy expenditure through activation of brown adipose tissue. Thus, we identify a microbiome that protects against weight gain and its negative consequences through metabolic programming in early life. Translation of these results to humans may identify early-life therapeutics that protect against obesity.


Assuntos
Dieta , Resistência à Doença , Suscetibilidade a Doenças , Exposição Ambiental , Interações entre Hospedeiro e Microrganismos , Microbiota , Obesidade/etiologia , Ração Animal , Animais , Dieta/efeitos adversos , Dieta Hiperlipídica , Modelos Animais de Doenças , Metabolismo Energético , Microbioma Gastrointestinal , Camundongos , Fatores de Tempo , Aumento de Peso
8.
Science ; 371(6529): 595-602, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33542131

RESUMO

Anti-programmed cell death protein 1 (PD-1) therapy provides long-term clinical benefits to patients with advanced melanoma. The composition of the gut microbiota correlates with anti-PD-1 efficacy in preclinical models and cancer patients. To investigate whether resistance to anti-PD-1 can be overcome by changing the gut microbiota, this clinical trial evaluated the safety and efficacy of responder-derived fecal microbiota transplantation (FMT) together with anti-PD-1 in patients with PD-1-refractory melanoma. This combination was well tolerated, provided clinical benefit in 6 of 15 patients, and induced rapid and durable microbiota perturbation. Responders exhibited increased abundance of taxa that were previously shown to be associated with response to anti-PD-1, increased CD8+ T cell activation, and decreased frequency of interleukin-8-expressing myeloid cells. Responders had distinct proteomic and metabolomic signatures, and transkingdom network analyses confirmed that the gut microbiome regulated these changes. Collectively, our findings show that FMT and anti-PD-1 changed the gut microbiome and reprogrammed the tumor microenvironment to overcome resistance to anti-PD-1 in a subset of PD-1 advanced melanoma.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Transplante de Microbiota Fecal , Melanoma/terapia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Neoplasias Cutâneas/terapia , Linfócitos T CD8-Positivos/imunologia , Microbioma Gastrointestinal , Humanos , Interleucina-8/imunologia , Ativação Linfocitária , Linfócitos do Interstício Tumoral/imunologia , Células Mieloides/imunologia , Microambiente Tumoral/imunologia
9.
Cell ; 184(3): 615-627.e17, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33453153

RESUMO

The microbiota shields the host against infections in a process known as colonization resistance. How infections themselves shape this fundamental process remains largely unknown. Here, we show that gut microbiota from previously infected hosts display enhanced resistance to infection. This long-term functional remodeling is associated with altered bile acid metabolism leading to the expansion of taxa that utilize the sulfonic acid taurine. Notably, supplying exogenous taurine alone is sufficient to induce this alteration in microbiota function and enhance resistance. Mechanistically, taurine potentiates the microbiota's production of sulfide, an inhibitor of cellular respiration, which is key to host invasion by numerous pathogens. As such, pharmaceutical sequestration of sulfide perturbs the microbiota's composition and promotes pathogen invasion. Together, this work reveals a process by which the host, triggered by infection, can deploy taurine as a nutrient to nourish and train the microbiota, promoting its resistance to subsequent infection.


Assuntos
Microbioma Gastrointestinal , Interações Hospedeiro-Patógeno , Animais , Infecções Bacterianas/imunologia , Infecções Bacterianas/microbiologia , Contagem de Colônia Microbiana , Microbioma Gastrointestinal/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Imunidade , Camundongos Endogâmicos C57BL , Sulfetos/metabolismo , Taurina/farmacologia
10.
Brain Behav Immun ; 91: 472-486, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33157257

RESUMO

The gut microbiome appears to play an important role in human health and disease. However, only little is known about how variability in the gut microbiome contributes to individual differences during early and sensitive stages of brain and behavioral development. The current study examined the link between gut microbiome, brain, and behavior in newborn infants (N = 63; M [age] = 25 days). Infant gut microbiome diversity was measured from stool samples using metagenomic sequencing, infant functional brain network connectivity was assessed using a resting state functional near infrared spectroscopy (rs-fNIRS) procedure, and infant behavioral temperament was assessed using parental report. Our results show that gut microbiota composition is linked to individual variability in brain network connectivity, which in turn mediated individual differences in behavioral temperament, specifically negative emotionality, among infants. Furthermore, virulence factors, possibly indexing pathogenic activity, were associated with differences in brain network connectivity linked to negative emotionality. These findings provide novel insights into the early developmental origins of the gut microbiome-brain axis and its association with variability in important behavioral traits. This suggests that the gut microbiome is an important biological factor to consider when studying human development and health.


Assuntos
Microbioma Gastrointestinal , Adulto , Encéfalo , Humanos , Lactente , Recém-Nascido , Temperamento
11.
Science ; 365(6452)2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31371577

RESUMO

Laboratory mouse studies are paramount for understanding basic biological phenomena but also have limitations. These include conflicting results caused by divergent microbiota and limited translational research value. To address both shortcomings, we transferred C57BL/6 embryos into wild mice, creating "wildlings." These mice have a natural microbiota and pathogens at all body sites and the tractable genetics of C57BL/6 mice. The bacterial microbiome, mycobiome, and virome of wildlings affect the immune landscape of multiple organs. Their gut microbiota outcompete laboratory microbiota and demonstrate resilience to environmental challenges. Wildlings, but not conventional laboratory mice, phenocopied human immune responses in two preclinical studies. A combined natural microbiota- and pathogen-based model may enhance the reproducibility of biomedical studies and increase the bench-to-bedside safety and success of immunological studies.


Assuntos
Animais Selvagens/microbiologia , Microbioma Gastrointestinal , Interações entre Hospedeiro e Microrganismos/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Pesquisa Translacional Biomédica/normas
12.
mBio ; 10(3)2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31164469

RESUMO

The factors that determine host susceptibility to tuberculosis (TB) are poorly defined. The microbiota has been identified as a key influence on the nutritional, metabolic, and immunological status of the host, although its role in the pathogenesis of TB is currently unclear. Here, we investigated the influence of Mycobacterium tuberculosis exposure on the microbiome and conversely the impact of the intestinal microbiome on the outcome of M. tuberculosis exposure in a rhesus macaque model of tuberculosis. Animals were infected with different strains and doses of M. tuberculosis in three independent experiments, resulting in a range of disease severities. The compositions of the microbiotas were then assessed using a combination of 16S rRNA and metagenomic sequencing in fecal samples collected pre- and postinfection. Clustering analyses of the microbiota compositions revealed that alterations in the microbiome after M. tuberculosis infection were of much lower magnitude than the variability seen between individual monkeys. However, the microbiomes of macaques that developed severe disease were noticeably distinct from those of the animals with less severe disease as well as from each other. In particular, the bacterial families Lachnospiraceae and Clostridiaceae were enriched in monkeys that were more susceptible to infection, while numbers of Streptococcaceae were decreased. These findings in infected nonhuman primates reveal that certain baseline microbiome communities may strongly associate with the development of severe tuberculosis following infection and can be more important disease correlates than alterations to the microbiota following M. tuberculosis infection itself.IMPORTANCE Why some but not all individuals infected with Mycobacterium tuberculosis develop disease is poorly understood. Previous studies have revealed an important influence of the microbiota on host resistance to infection with a number of different disease agents. Here, we investigated the possible role of the individual's microbiome in impacting the outcome of M. tuberculosis infection in rhesus monkeys experimentally exposed to this important human pathogen. Although M. tuberculosis infection itself caused only minor alterations in the composition of the gut microbiota in these animals, we observed a significant correlation between an individual monkey's microbiome and the severity of pulmonary disease. More importantly, this correlation between microbiota structure and disease outcome was evident even prior to infection. Taken together, our findings suggest that the composition of the microbiome may be a useful predictor of tuberculosis progression in infected individuals either directly because of the microbiome's direct influence on host resistance or indirectly because of its association with other host factors that have this influence. This calls for exploration of the potential of the microbiota composition as a predictive biomarker through carefully designed prospective studies.


Assuntos
Suscetibilidade a Doenças/microbiologia , Microbioma Gastrointestinal , Tuberculose/microbiologia , Animais , Disbiose/microbiologia , Feminino , Macaca mulatta/microbiologia , Masculino , Metagenômica , Mycobacterium tuberculosis/patogenicidade , Estudos Prospectivos , RNA Ribossômico 16S/genética
13.
Immunity ; 49(5): 943-957.e9, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30389414

RESUMO

Although commensal flora is involved in the regulation of immunity, the interplay between cytokine signaling and microbiota in atherosclerosis remains unknown. We found that interleukin (IL)-23 and its downstream target IL-22 restricted atherosclerosis by repressing pro-atherogenic microbiota. Inactivation of IL-23-IL-22 signaling led to deterioration of the intestinal barrier, dysbiosis, and expansion of pathogenic bacteria with distinct biosynthetic and metabolic properties, causing systemic increase in pro-atherogenic metabolites such as lipopolysaccharide (LPS) and trimethylamine N-oxide (TMAO). Augmented disease in the absence of the IL-23-IL-22 pathway was mediated in part by pro-atherogenic osteopontin, controlled by microbial metabolites. Microbiota transfer from IL-23-deficient mice accelerated atherosclerosis, whereas microbial depletion or IL-22 supplementation reduced inflammation and ameliorated disease. Our work uncovers the IL-23-IL-22 signaling as a regulator of atherosclerosis that restrains expansion of pro-atherogenic microbiota and argues for informed use of cytokine blockers to avoid cardiovascular side effects driven by microbiota and inflammation.


Assuntos
Aterosclerose/etiologia , Aterosclerose/metabolismo , Dieta , Microbioma Gastrointestinal , Homeostase , Interleucina-23/metabolismo , Interleucinas/metabolismo , Animais , Aterosclerose/patologia , Biomarcadores , Modelos Animais de Doenças , Progressão da Doença , Expressão Gênica , Imunofenotipagem , Interleucina-23/deficiência , Metabolismo dos Lipídeos , Camundongos , Camundongos Knockout , Osteopontina/genética , Osteopontina/metabolismo , Transdução de Sinais , Interleucina 22
14.
Science ; 360(6391)2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29798856

RESUMO

Primary liver tumors and liver metastasis currently represent the leading cause of cancer-related death. Commensal bacteria are important regulators of antitumor immunity, and although the liver is exposed to gut bacteria, their role in antitumor surveillance of liver tumors is poorly understood. We found that altering commensal gut bacteria in mice induced a liver-selective antitumor effect, with an increase of hepatic CXCR6+ natural killer T (NKT) cells and heightened interferon-γ production upon antigen stimulation. In vivo functional studies showed that NKT cells mediated liver-selective tumor inhibition. NKT cell accumulation was regulated by CXCL16 expression of liver sinusoidal endothelial cells, which was controlled by gut microbiome-mediated primary-to-secondary bile acid conversion. Our study suggests a link between gut bacteria-controlled bile acid metabolism and liver antitumor immunosurveillance.


Assuntos
Ácidos e Sais Biliares/metabolismo , Microbioma Gastrointestinal/imunologia , Vigilância Imunológica , Neoplasias Hepáticas/imunologia , Fígado/metabolismo , Células T Matadoras Naturais/imunologia , Animais , Quimiocina CXCL16/metabolismo , Clostridium/metabolismo , Humanos , Fígado/imunologia , Fígado/patologia , Neoplasias Hepáticas/patologia , Depleção Linfocítica , Camundongos , Camundongos Endogâmicos C57BL , Metástase Neoplásica , Receptores CXCR6/metabolismo
15.
Cell ; 171(5): 1015-1028.e13, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29056339

RESUMO

Laboratory mice, while paramount for understanding basic biological phenomena, are limited in modeling complex diseases of humans and other free-living mammals. Because the microbiome is a major factor in mammalian physiology, we aimed to identify a naturally evolved reference microbiome to better recapitulate physiological phenomena relevant in the natural world outside the laboratory. Among 21 distinct mouse populations worldwide, we identified a closely related wild relative to standard laboratory mouse strains. Its bacterial gut microbiome differed significantly from its laboratory mouse counterpart and was transferred to and maintained in laboratory mice over several generations. Laboratory mice reconstituted with natural microbiota exhibited reduced inflammation and increased survival following influenza virus infection and improved resistance against mutagen/inflammation-induced colorectal tumorigenesis. By demonstrating the host fitness-promoting traits of natural microbiota, our findings should enable the discovery of protective mechanisms relevant in the natural world and improve the modeling of complex diseases of free-living mammals. VIDEO ABSTRACT.


Assuntos
Microbioma Gastrointestinal , Camundongos/classificação , Camundongos/microbiologia , Animais , Animais de Laboratório , Animais Selvagens , Carcinogênese/imunologia , Resistência à Doença , Feminino , Masculino , Maryland , Camundongos/imunologia , Camundongos Endogâmicos C57BL , Peromyscus , Viroses/imunologia
16.
J Glob Antimicrob Resist ; 10: 19-20, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28576742

RESUMO

CTX-M-15-producing Klebsiella pneumoniae is one of the leading causes of hospital-acquired infections globally. In this study, we present the draft genome sequence of the first CTX-M-15-producing endophytic K. pneumoniae strain, belonging to sequence type 198 (ST198) and isolated from commercial lettuce, which can be used as a reference sequence for comparative analysis with clinical and environmental strains of K. pneumoniae.


Assuntos
Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/isolamento & purificação , Lactuca/microbiologia , beta-Lactamases/genética , Proteínas de Bactérias/genética , Sequência de Bases , Brasil , DNA Bacteriano , Farmacorresistência Bacteriana Múltipla/genética , Sequenciamento do Exoma
18.
Antimicrob Agents Chemother ; 60(10): 6415-7, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27503650

RESUMO

A colistin-resistant Escherichia coli strain was recovered from a patient with a diabetic foot infection in Brazil. Whole-genome analysis revealed that the E. coli isolate belonged to the widespread sequence type (ST) 101 and harbored the mcr-1 gene on an IncX4 plasmid that was highly similar to mcr-1-bearing IncX4 plasmids that were recently identified in Enterobacteriaceae from food, animal, and human samples recovered on different continents. These results suggest that self-transmissible IncX4-type plasmids may represent promiscuous plasmids contributing to the intercontinental spread of the mcr-1 gene.


Assuntos
Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Proteínas de Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Idoso , Brasil , Farmacorresistência Bacteriana/efeitos dos fármacos , Escherichia coli/genética , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Humanos , Masculino , Testes de Sensibilidade Microbiana , Plasmídeos/efeitos dos fármacos , Plasmídeos/genética
19.
Genome Announc ; 2(2)2014 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-24699949

RESUMO

Pseudomonas aeruginosa is an important cause of infection, especially in immunocompromised patients. In this regard, strains producing carbapenemases, mainly metallo-ß-lactamases (MBLs), have become a significant public health concern. Here, we present the complete annotated genome sequence (65.7 kb) of an F8-related lytic myovirus (Pbunalikevirus genus) that infects MBL-producing P. aeruginosa strains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...