Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 12: 752940, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777017

RESUMO

Cardiac optical mapping, also known as optocardiography, employs parameter-sensitive fluorescence dye(s) to image cardiac tissue and resolve the electrical and calcium oscillations that underly cardiac function. This technique is increasingly being used in conjunction with, or even as a replacement for, traditional electrocardiography. Over the last several decades, optical mapping has matured into a "gold standard" for cardiac research applications, yet the analysis of optical signals can be challenging. Despite the refinement of software tools and algorithms, significant programming expertise is often required to analyze large optical data sets, and data analysis can be laborious and time-consuming. To address this challenge, we developed an accessible, open-source software script that is untethered from any subscription-based programming language. The described software, written in python, is aptly named "KairoSight" in reference to the Greek word for "opportune time" (Kairos) and the ability to "see" voltage and calcium signals acquired from cardiac tissue. To demonstrate analysis features and highlight species differences, we employed experimental datasets collected from mammalian hearts (Langendorff-perfused rat, guinea pig, and swine) dyed with RH237 (transmembrane voltage) and Rhod-2, AM (intracellular calcium), as well as human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) dyed with FluoVolt (membrane potential), and Fluo-4, AM (calcium indicator). We also demonstrate cardiac responsiveness to ryanodine (ryanodine receptor modulator) and isoproterenol (beta-adrenergic agonist) and highlight regional differences after an ablation injury. KairoSight can be employed by both basic and clinical scientists to analyze complex cardiac optical mapping datasets without requiring dedicated computer science expertise or proprietary software.

2.
Am J Physiol Heart Circ Physiol ; 318(2): H354-H365, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31886723

RESUMO

Rodent models are frequently employed in cardiovascular research, yet our understanding of pediatric cardiac physiology has largely been deduced from more simplified two-dimensional cell studies. Previous studies have shown that postnatal development includes an alteration in the expression of genes and proteins involved in cell coupling, ion channels, and intracellular calcium handling. Accordingly, we hypothesized that postnatal cell maturation is likely to lead to dynamic alterations in whole heart electrophysiology and calcium handling. To test this hypothesis, we employed multiparametric imaging and electrophysiological techniques to quantify developmental changes from neonate to adult. In vivo electrocardiograms were collected to assess changes in heart rate, variability, and atrioventricular conduction (Sprague-Dawley rats). Intact, whole hearts were transferred to a Langendorff-perfusion system for multiparametric imaging (voltage, calcium). Optical mapping was performed in conjunction with an electrophysiology study to assess cardiac dynamics throughout development. Postnatal age was associated with an increase in the heart rate (181 ± 34 vs. 429 ± 13 beats/min), faster atrioventricular conduction (94 ± 13 vs. 46 ± 3 ms), shortened action potentials (APD80: 113 ± 18 vs. 60 ± 17 ms), and decreased ventricular refractoriness (VERP: 157 ± 45 vs. 57 ± 14 ms; neonatal vs. adults, means ± SD, P < 0.05). Calcium handling matured with development, resulting in shortened calcium transient durations (168 ± 18 vs. 117 ± 14 ms) and decreased propensity for calcium transient alternans (160 ± 18- vs. 99 ± 11-ms cycle length threshold; neonatal vs. adults, mean ± SD, P < 0.05). Results of this study can serve as a comprehensive baseline for future studies focused on pediatric disease modeling and/or preclinical testing.NEW & NOTEWORTHY This is the first study to assess cardiac electrophysiology and calcium handling throughout postnatal development, using both in vivo and whole heart models.


Assuntos
Envelhecimento/fisiologia , Cálcio/metabolismo , Cálcio/fisiologia , Fenômenos Eletrofisiológicos/fisiologia , Coração/crescimento & desenvolvimento , Coração/fisiologia , Potenciais de Ação/fisiologia , Agonistas Adrenérgicos beta/farmacologia , Animais , Animais Recém-Nascidos , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Circulação Coronária/fisiologia , Eletrocardiografia , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Coração/efeitos dos fármacos , Sistema de Condução Cardíaco/crescimento & desenvolvimento , Sistema de Condução Cardíaco/fisiologia , Frequência Cardíaca/fisiologia , Técnicas In Vitro , Isoproterenol/farmacologia , Perfusão , Ratos , Ratos Sprague-Dawley
3.
J Vis Exp ; (153)2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31762469

RESUMO

Small animal models are most commonly used in cardiovascular research due to the availability of genetically modified species and lower cost compared to larger animals. Yet, larger mammals are better suited for translational research questions related to normal cardiac physiology, pathophysiology, and preclinical testing of therapeutic agents. To overcome the technical barriers associated with employing a larger animal model in cardiac research, we describe an approach to measure physiological parameters in an isolated, Langendorff-perfused piglet heart. This approach combines two powerful experimental tools to evaluate the state of the heart: electrophysiology (EP) study and simultaneous optical mapping of transmembrane voltage and intracellular calcium using parameter sensitive dyes (RH237, Rhod2-AM). The described methodologies are well suited for translational studies investigating the cardiac conduction system, alterations in action potential morphology, calcium handling, excitation-contraction coupling and the incidence of cardiac alternans or arrhythmias.


Assuntos
Eletrofisiologia Cardíaca/métodos , Preparação de Coração Isolado , Fenômenos Ópticos , Potenciais de Ação , Animais , Arritmias Cardíacas/patologia , Arritmias Cardíacas/fisiopatologia , Cálcio/metabolismo , Sistema de Condução Cardíaco/fisiopatologia , Espaço Intracelular/metabolismo , Suínos
4.
Artigo em Inglês | MEDLINE | ID: mdl-31768502

RESUMO

BACKGROUND: Optical mapping of transmembrane voltage and intracellular calcium is a powerful tool for investigating cardiac physiology and pathophysiology. However, simultaneous dual mapping of two fluorescent probes remains technically challenging. We introduce a novel, easy-to-use approach that requires a path splitter, single camera and excitation light to simultaneously acquire voltage and calcium signals from whole heart preparations, which can be applied to other physiological models - including neurons and isolated cardiomyocytes. RESULTS: Complementary probes were selected that could be excited with a single wavelength light source. Langendorff-perfused hearts (rat, swine) were stained and imaged using a sCMOS camera outfitted with an optical path splitter to simultaneously acquire two emission fields at high spatial and temporal resolution. Voltage (RH237) and calcium (Rhod2) signals were acquired concurrently on a single sensor, resulting in two 384 × 256 images at 814 frames per second. At this frame rate, the signal-to-noise ratio was 47 (RH237) and 85 (Rhod2). Imaging experiments were performed on small rodent hearts, as well as larger pig hearts with sufficient optical signals. In separate experiments, each dye was used independently to assess crosstalk and demonstrate signal specificity. Additionally, the effect of ryanodine on myocardial calcium transients was validated - with no measurable effect on the amplitude of optical action potentials. To demonstrate spatial resolution, ventricular tachycardia was induced - resulting in the novel finding that spatially discordant calcium alternans can be present in different regions of the heart, even when electrical alternans remain concordant. The described system excels in providing a wide field of view and high spatiotemporal resolution for a variety of cardiac preparations. CONCLUSIONS: We report the first multiparametric mapping system that simultaneously acquires calcium and voltage signals from cardiac preparations, using a path splitter, single camera and excitation light. This approach eliminates the need for multiple cameras, excitation light patterning or frame interleaving. These features can aid in the adoption of dual mapping technology by the broader cardiovascular research community, and decrease the barrier of entry into panoramic heart imaging, as it reduces the number of required cameras.

5.
Circ Arrhythm Electrophysiol ; 12(7): e007294, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31248280

RESUMO

BACKGROUND: Phthalates are used as plasticizers in the manufacturing of flexible, plastic medical products. Patients can be subjected to high phthalate exposure through contact with plastic medical devices. We aimed to investigate the cardiac safety and biocompatibility of mono-2-ethylhexyl phthalate (MEHP), a phthalate with documented exposure in intensive care patients. METHODS: Optical mapping of transmembrane voltage and pacing studies were performed on isolated, Langendorff-perfused rat hearts to assess cardiac electrophysiology after MEHP exposure compared with controls. MEHP dose was chosen based on reported blood concentrations after an exchange transfusion procedure. RESULTS: Thirty-minute exposure to MEHP increased the atrioventricular node (147 versus 107 ms) and ventricular (117 versus 77.5 ms) effective refractory periods, compared with controls. Optical mapping revealed prolonged action potential duration at slower pacing cycle lengths, akin to reverse use dependence. The plateau phase of the action potential duration restitution curve steepened and became monophasic in MEHP-exposed hearts (0.18 versus 0.06 slope). Action potential duration lengthening occurred during late-phase repolarization resulting in triangulation (70.3 versus 56.6 ms). MEHP exposure also slowed epicardial conduction velocity (35 versus 60 cm/s), which may be partly explained by inhibition of Nav1.5 (874 and 231 µmol/L half-maximal inhibitory concentration, fast and late sodium current). CONCLUSIONS: This study highlights the impact of acute MEHP exposure, using a clinically relevant dose, on cardiac electrophysiology in the intact heart. Heightened clinical exposure to plasticized medical products may have cardiac safety implications-given that action potential triangulation and electrical restitution modifications are a risk factor for early after depolarizations and cardiac arrhythmias.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Arritmias Cardíacas/induzido quimicamente , Dietilexilftalato/análogos & derivados , Equipamentos e Provisões/efeitos adversos , Sistema de Condução Cardíaco/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Plastificantes/toxicidade , Animais , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Simulação por Computador , Dietilexilftalato/toxicidade , Desenho de Equipamento , Sistema de Condução Cardíaco/metabolismo , Sistema de Condução Cardíaco/fisiopatologia , Humanos , Preparação de Coração Isolado , Masculino , Modelos Cardiovasculares , Ratos Sprague-Dawley , Período Refratário Eletrofisiológico/efeitos dos fármacos , Medição de Risco , Canais de Sódio/efeitos dos fármacos , Canais de Sódio/metabolismo , Fatores de Tempo , Imagens com Corantes Sensíveis à Voltagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...