Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Appl Clin Med Phys ; 22(7): 110-120, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34021713

RESUMO

PURPOSE: There is an increased interest in using non-coplanar beams for radiotherapy, including SBRT and SRS. This approach can significantly reduce doses to organs-at-risk, however, it requires stringent quality assurance, especially when a dynamic treatment couch is used. In this work, new functionality that allows using non-coplanar beam arrangements in addition to conventional coplanar beams was added and validated to the previously developed in vivo dose verification system. METHODS: The existing program code was modified to manage the additional treatment couch parameters: angle and positions. Ten non-coplanar test plans that use a static couch were created in the treatment planning system. Also, two plans that use a dynamic treatment couch were created and delivered using Varian Developer mode, since the treatment planning system does not support a dynamic couch. All non-coplanar test trajectories were delivered on a simple geometric phantom, using an Edge linear accelerator (Varian Medical Systems) with the megavoltage imager deployed and acquiring megavoltage transmission images that were used to calculate the delivered 3D dose distributions in the phantom with the updated dose calculation algorithm. The reconstructed dose distributions were compared using the 3D chi-comparison test with 2%/2mm tolerances to the corresponding reference dose distributions obtained from the treatment planning system. RESULTS: The chi-comparison test resulted in at least a 97.0% pass rate over the entire 3D volume for all tested trajectories. For static gantry, static couch non-coplanar fields, and non-coplanar arcs using dynamic couch the pass rates observed were at least 98%, while for the static couch, non-transverse coplanar arc fields, pass rates were at least 97%. CONCLUSIONS: A model-based 3D dose calculation algorithm has been extended and validated for a variety of non-coplanar beam trajectories of different complexities. This system can potentially be applied for quality assurance of treatment delivery systems that use complex, non-coplanar beam arrangements.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Aceleradores de Partículas , Imagens de Fantasmas , Doses de Radiação , Dosagem Radioterapêutica
2.
Med Phys ; 47(10): 5301-5311, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32762044

RESUMO

PURPOSE: In real-time electronic portal imaging device (EPID) dosimetry applications where on-treatment measured transmission images are compared to an ideal predicted image, ideally a tight tolerance should be set on the quantitative image comparison in order to detect a wide variety of possible delivery errors. However, this is currently not possible due to the appearance of banding artifacts in individual frames of the measured EPID image sequences. The purpose of this work was to investigate simulating banding artifacts in our cine-EPID predicted image sequences to improve matching of individual image frames to the acquired image sequence. Increased sensitivity of this method to potential treatment delivery errors would represent an improvement in patient safety and treatment accuracy. METHODS: A circuit board was designed and built to capture the target current (TARG-I) and forward power signals produced by the linac to help model the discrete beam-formation process of the linac. To simulate the temporal-spatial nature of the EPID readout, a moving read out mask was applied with the timing of the application of the readout mask synchronized to the TARG-I pulses. Since identifying the timing of the first TARG-I pulse affected the location of the banding artifacts throughout the image sequence, and furthermore the first several TARG-I pulses at the beginning of "beam on" are not at full height yet (i.e., dose rate is ramping up), the forward-power signal was also used to assist in reliable detection of the first radiation pulse of the beam delivery. The predicted EPID cine-image sequence obtained using a comprehensive physics-based model was modified to incorporate the discrete nature of the EPID frame readout. This modified banding predicted EPID (MBP-EPID) image sequence was then compared to its corresponding measured EPID cine-image sequence on a frame-by-frame basis. The EPID was mounted on a Clinac 2100ix linac (Varian Medical Systems, Palo Alto, CA). The field size was set to 21.4  ×  28.6 cm2 with no MLC modulation, beam energy of 6 MV, dose rate of 600 MU/min, and 700 MU were delivered for each clockwise (CW) and counter-clockwise (CCW) arc. No phantoms were placed in the beam. RESULTS: The dose rate ramp up effect was observed at the beginning irradiations, and the identification and timing of the radiation pulses, even during the dose rate ramp up, were able to be quantified using the TARG-I and forward power signals. The approach of capturing individual dose pulses and synchronizing with the mask image applied to the original predicted EPID image sequence was demonstrated to model the actual EPID readout. The MBP-EPID image sequences closely reproduced the location and magnitude of the banding features observed in the acquired (i.e., measured) image sequence, for all test irradiations examined here. CONCLUSIONS: The banding artifacts observed in the measured EPID cine-frame sequences were reproduced in the predicted EPID cine-frames by simulating the discrete temporal-spatial nature of the EPID read out. The MBP-EPID images showed good agreement qualitatively to the corresponding measured EPID frame sequence of a simple square test field, without any phantom in the beam. This approach will lead to improved image comparison tolerances for real-time patient dosimetry applications.


Assuntos
Aceleradores de Partículas , Radiometria , Eletrônica , Humanos , Imagens de Fantasmas , Dosagem Radioterapêutica
3.
Phys Med ; 44: 123-130, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28576581

RESUMO

SBRT for lung cancer is being rapidly adopted as a treatment option in modern radiotherapy centres. This treatment is one of the most complex in common clinical use, requiring significant expertise and resources. It delivers a high dose per fraction (typically ∼6-30Gy/fraction) over few fractions. The complexity and high dose delivered in only a few fractions make powerful arguments for the application of in vivo dosimetry methods for these treatments to enhance patient safety. In vivo dosimetry is a group of techniques with a common objective - to estimate the dose delivered to the patient through a direct measurement of the treatment beam(s). In particular, methods employing an electronic portal imaging device have been intensely investigated over the past two decades. Treatment verification using in vivo dosimetry approaches has been shown to identify errors that would have been missed with other common quality assurance methods. With the addition of in vivo dosimetry to verify treatments, medical physicists and clinicians have a higher degree of confidence that the dose has been delivered to the patient as intended. In this review, the technical aspects and challenges of in vivo dosimetry for lung SBRT will be presented, focusing on transit dosimetry applications using electronic portal imaging devices (EPIDs). Currently available solutions will be discussed and published clinical experiences, which are very limited to date, will be highlighted.


Assuntos
Dosimetria in Vivo/métodos , Neoplasias Pulmonares/radioterapia , Radiocirurgia/métodos , Humanos
4.
Int J Radiat Oncol Biol Phys ; 97(5): 1077-1084, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28332992

RESUMO

PURPOSE: To report findings from an in vivo dosimetry program implemented for all stereotactic body radiation therapy patients over a 31-month period and discuss the value and challenges of utilizing in vivo electronic portal imaging device (EPID) dosimetry clinically. METHODS AND MATERIALS: From December 2013 to July 2016, 117 stereotactic body radiation therapy-volumetric modulated arc therapy patients (100 lung, 15 spine, and 2 liver) underwent 602 EPID-based in vivo dose verification events. A developed model-based dose reconstruction algorithm calculates the 3-dimensional dose distribution to the patient by back-projecting the primary fluence measured by the EPID during treatment. The EPID frame-averaging was optimized in June 2015. For each treatment, a 3%/3-mm γ comparison between our EPID-derived dose and the Eclipse AcurosXB-predicted dose to the planning target volume (PTV) and the ≥20% isodose volume were performed. Alert levels were defined as γ pass rates <85% (lung and liver) and <80% (spine). Investigations were carried out for all fractions exceeding the alert level and were classified as follows: EPID-related, algorithmic, patient setup, anatomic change, or unknown/unidentified errors. RESULTS: The percentages of fractions exceeding the alert levels were 22.6% for lung before frame-average optimization and 8.0% for lung, 20.0% for spine, and 10.0% for liver after frame-average optimization. Overall, mean (± standard deviation) planning target volume γ pass rates were 90.7% ± 9.2%, 87.0% ± 9.3%, and 91.2% ± 3.4% for the lung, spine, and liver patients, respectively. CONCLUSIONS: Results from the clinical implementation of our model-based in vivo dose verification method using on-treatment EPID images is reported. The method is demonstrated to be valuable for routine clinical use for verifying delivered dose as well as for detecting errors.


Assuntos
Neoplasias/radioterapia , Radiometria/instrumentação , Radiocirurgia/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/instrumentação , Ecrans Intensificadores para Raios X , Adulto , Idoso , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Neoplasias/diagnóstico , Neoplasias/fisiopatologia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/instrumentação , Radioterapia de Intensidade Modulada/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
5.
Radiat Oncol ; 11(1): 106, 2016 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-27520279

RESUMO

PURPOSE: The aim of this study is to investigate the performance and limitations of a real-time transit electronic portal imaging device (EPID) dosimetry system for error detection during dynamic intensity modulated radiation therapy (IMRT) treatment delivery. Sites studied are prostate, head and neck (HN), and rectal cancer treatments. METHODS: The system compares measured cumulative transit EPID image frames with predicted cumulative image frames in real-time during treatment using a χ comparison with 4 %, 4 mm criteria. The treatment site-specific thresholds (prostate, HN and rectum IMRT) were determined using initial data collected from 137 patients (274 measured treatment fractions) and a statistical process control methodology. These thresholds were then applied to data from 15 selected patients including 5 prostate, 5 HN, and 5 rectum IMRT treatments for system evaluation and classification of error sources. RESULTS: Clinical demonstration of real-time transit EPID dosimetry in IMRT was presented. For error simulation, the system could detect gross errors (i.e. wrong patient, wrong plan, wrong gantry angle) immediately after EPID stabilisation; 2 seconds after the start of treatment. The average rate of error detection was 7.0 % (prostate = 5.6 %, HN= 8.7 % and rectum = 6.7 %). The detected errors were classified as either clinical in origin (e.g. patient anatomical changes), or non-clinical in origin (e.g. detection system errors). Classified errors were 3.2 % clinical and 3.9 % non-clinical. CONCLUSION: An EPID-based real-time error detection method for treatment verification during dynamic IMRT has been developed and tested for its performance and limitations. The system is able to detect gross errors in real-time, however improvement in system robustness is required to reduce the non-clinical sources of error detection.


Assuntos
Sistemas Computacionais , Radiometria/instrumentação , Radiometria/métodos , Algoritmos , Humanos , Radioterapia de Intensidade Modulada
6.
Med Phys ; 42(12): 6945-54, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26632050

RESUMO

PURPOSE: Radiation treatments are trending toward delivering higher doses per fraction under stereotactic radiosurgery and hypofractionated treatment regimens. There is a need for accurate 3D in vivo patient dose verification using electronic portal imaging device (EPID) measurements. This work presents a model-based technique to compute full three-dimensional patient dose reconstructed from on-treatment EPID portal images (i.e., transmission images). METHODS: EPID dose is converted to incident fluence entering the patient using a series of steps which include converting measured EPID dose to fluence at the detector plane and then back-projecting the primary source component of the EPID fluence upstream of the patient. Incident fluence is then recombined with predicted extra-focal fluence and used to calculate 3D patient dose via a collapsed-cone convolution method. This method is implemented in an iterative manner, although in practice it provides accurate results in a single iteration. The robustness of the dose reconstruction technique is demonstrated with several simple slab phantom and nine anthropomorphic phantom cases. Prostate, head and neck, and lung treatments are all included as well as a range of delivery techniques including VMAT and dynamic intensity modulated radiation therapy (IMRT). RESULTS: Results indicate that the patient dose reconstruction algorithm compares well with treatment planning system computed doses for controlled test situations. For simple phantom and square field tests, agreement was excellent with a 2%/2 mm 3D chi pass rate ≥98.9%. On anthropomorphic phantoms, the 2%/2 mm 3D chi pass rates ranged from 79.9% to 99.9% in the planning target volume (PTV) region and 96.5% to 100% in the low dose region (>20% of prescription, excluding PTV and skin build-up region). CONCLUSIONS: An algorithm to reconstruct delivered patient 3D doses from EPID exit dosimetry measurements was presented. The method was applied to phantom and patient data sets, as well as for dynamic IMRT and VMAT delivery techniques. Results indicate that the EPID dose reconstruction algorithm presented in this work is suitable for clinical implementation.


Assuntos
Algoritmos , Imageamento Tridimensional/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Cabeça/efeitos da radiação , Humanos , Imageamento Tridimensional/instrumentação , Pulmão/efeitos da radiação , Masculino , Modelos Biológicos , Pescoço/efeitos da radiação , Imagens de Fantasmas , Próstata/efeitos da radiação , Radiometria/instrumentação , Radiometria/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/instrumentação , Radioterapia de Intensidade Modulada/instrumentação
7.
Int J Radiat Oncol Biol Phys ; 93(3): 516-22, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26460993

RESUMO

PURPOSE: Gantry-mounted megavoltage electronic portal imaging devices (EPIDs) have become ubiquitous on linear accelerators. WatchDog is a novel application of EPIDs, in which the image frames acquired during treatment are used to monitor treatment delivery in real time. We report on the preliminary use of WatchDog in a prospective study of cancer patients undergoing intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) and identify the challenges of clinical adoption. METHODS AND MATERIALS: At the time of submission, 28 cancer patients (head and neck, pelvis, and prostate) undergoing fractionated external beam radiation therapy (24 IMRT, 4 VMAT) had ≥1 treatment fraction verified in real time (131 fractions or 881 fields). EPID images acquired continuously during treatment were synchronized and compared with model-generated transit EPID images within a frame time (∼0.1 s). A χ comparison was performed to cumulative frames to gauge the overall delivery quality, and the resulting pass rates were reported graphically during treatment delivery. Every frame acquired (500-1500 per fraction) was saved for postprocessing and analysis. RESULTS: The system reported the mean ± standard deviation in real time χ 91.1% ± 11.5% (83.6% ± 13.2%) for cumulative frame χ analysis with 4%, 4 mm (3%, 3 mm) criteria, global over the integrated image. CONCLUSIONS: A real-time EPID-based radiation delivery verification system for IMRT and VMAT has been demonstrated that aims to prevent major mistreatments in radiation therapy.


Assuntos
Neoplasias de Cabeça e Pescoço/radioterapia , Aceleradores de Partículas/instrumentação , Neoplasias Pélvicas/radioterapia , Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Erros de Configuração em Radioterapia/prevenção & controle , Radioterapia de Intensidade Modulada/métodos , Distribuição de Qui-Quadrado , Gases , Humanos , Masculino , Estudos Prospectivos , Radiografia , Radiometria/instrumentação , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/instrumentação , Reto/diagnóstico por imagem
8.
Med Phys ; 40(9): 091907, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24007158

RESUMO

PURPOSE: To design and develop a real-time electronic portal imaging device (EPID)-based delivery verification system for dynamic intensity modulated radiation therapy (IMRT) which enables detection of gross treatment delivery errors before delivery of substantial radiation to the patient. METHODS: The system utilizes a comprehensive physics-based model to generate a series of predicted transit EPID image frames as a reference dataset and compares these to measured EPID frames acquired during treatment. The two datasets are using MLC aperture comparison and cumulative signal checking techniques. The system operation in real-time was simulated offline using previously acquired images for 19 IMRT patient deliveries with both frame-by-frame comparison and cumulative frame comparison. Simulated error case studies were used to demonstrate the system sensitivity and performance. RESULTS: The accuracy of the synchronization method was shown to agree within two control points which corresponds to approximately ∼1% of the total MU to be delivered for dynamic IMRT. The system achieved mean real-time gamma results for frame-by-frame analysis of 86.6% and 89.0% for 3%, 3 mm and 4%, 4 mm criteria, respectively, and 97.9% and 98.6% for cumulative gamma analysis. The system can detect a 10% MU error using 3%, 3 mm criteria within approximately 10 s. The EPID-based real-time delivery verification system successfully detected simulated gross errors introduced into patient plan deliveries in near real-time (within 0.1 s). CONCLUSIONS: A real-time radiation delivery verification system for dynamic IMRT has been demonstrated that is designed to prevent major mistreatments in modern radiation therapy.


Assuntos
Equipamentos e Provisões Elétricas , Radioterapia Guiada por Imagem/instrumentação , Radioterapia de Intensidade Modulada/instrumentação , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Masculino , Modelos Teóricos , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica , Erros de Configuração em Radioterapia , Fatores de Tempo
9.
Med Phys ; 40(8): 081715, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23927312

RESUMO

PURPOSE: Pretreatment verification of volumetric modulated arc therapy (VMAT) dose delivery with electronic portal imaging device (EPID) uses images integrated over the entire delivery or over large subarcs. This work aims to develop a new method for gantry-angle-resolved verification of VMAT dose delivery using EPID. METHODS: An EPID dose prediction model was used to calculate EPID images as a function of gantry angle for eight prostate patient deliveries. EPID image frames at 7.5 frames per second were acquired during delivery via a frame-grabber system. The gantry angle for each image was encoded in kV frames which were synchronized to the MV frames. Gamma analysis results as a function of gantry angle were assessed by integrating the frames over 2° subarcs with an angle-to-agreement tolerance of 0.5° about the measured image angle. RESULTS: The model agreed with EPID images integrated over the entire delivery with average Gamma pass-rates at 2%, 2 mm of 99.7% (10% threshold). The accuracy of the kV derived gantry angle for each image was found to be 0.1° (1 SD) using a phantom test. For the gantry-resolved analysis all Gamma pass-rates were greater than 90% at 3%, 3 mm criteria (with only two exceptions), and more than 90% had a 95% pass-rate, with an average of 97.3%. The measured gantry angle lagged behind the predicted angle by a mean of 0.3°±0.3°, with a maximum lag of 1.3°. CONCLUSIONS: The method provides a comprehensive and highly efficient pretreatment verification of VMAT delivery using EPID. Dose delivery accuracy is assessed as a function of gantry angle to ensure accurate treatment.


Assuntos
Equipamentos e Provisões Elétricas , Planejamento da Radioterapia Assistida por Computador/instrumentação , Radioterapia Guiada por Imagem , Radioterapia de Intensidade Modulada , Radiometria
10.
J Appl Clin Med Phys ; 13(6): 3981, 2012 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-23149790

RESUMO

The increasing popularity of intensity-modulated arc therapy (IMAT) treatments requires specifically designed linac quality assurance (QA) programs. Gantry angle is one of the parameters that has a major effect on the outcome of IMAT treatments since dose reconstruction for patient-specific QA relies on the gantry angle; therefore, it is essential to ensure its accuracy for correct delivery of the prescribed dose. In this study, a simple measurement method and algorithm are presented for QA of gantry angle measurements based on integrated EPID images acquired at distinct gantry angles and cine EPID images during an entire 360° arc. A comprehensive study was carried out to evaluate this method, as well as to evaluate two commercially available inclinometers (NG360 and IBA GAS supplied in conjunction with popular array dosimeters Delta4 and MatriXXEvolution, respectively) by comparing their simultaneous angle measurement results with the linac potentiometer readouts at five gantry speeds. In all tested measurement systems, the average differences with the reference angle data were less than 0.3° in static mode. In arc mode, at all tested gantry speeds the average difference was less than 0.1° for the IBA GAS and the proposed EPID-based method, and 0.6° for the NG360 after correction for the inherent systematic time delay of the inclinometer. The gantry rotation speed measured by the three independent systems had an average deviation of about 0.01°/s from the nominal gantry speed.


Assuntos
Equipamentos e Provisões Elétricas , Aceleradores de Partículas/instrumentação , Radiometria/instrumentação , Planejamento da Radioterapia Assistida por Computador/instrumentação , Radioterapia de Intensidade Modulada/instrumentação , Algoritmos , Humanos , Imagens de Fantasmas , Controle de Qualidade , Dosagem Radioterapêutica
11.
Med Phys ; 39(2): 623-35, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22320771

RESUMO

PURPOSE: Electronic portal imaging devices (EPIDs) have been studied and used for pretreatment and in-vivo dosimetry applications for many years. The application of EPIDs for dosimetry in arc treatments requires accurate characterization of the mechanical sag of the EPID and gantry during rotation. Several studies have investigated the effects of gravity on the sag of these systems but each have limitations. In this study, an easy experiment setup and accurate algorithm have been introduced to characterize and correct for the effect of EPID and gantry sag during arc delivery. METHODS: Three metallic ball bearings were used as markers in the beam: two of them fixed to the gantry head and the third positioned at the isocenter. EPID images were acquired during a 360° gantry rotation in cine imaging mode. The markers were tracked in EPID images and a robust in-house developed MATLAB code was used to analyse the images and find the EPID sag in three directions as well as the EPID + gantry sag by comparison to the reference gantry zero image. The algorithm results were then tested against independent methods. The method was applied to compare the effect in clockwise and counter clockwise gantry rotations and different source-to-detector distances (SDDs). The results were monitored for one linear accelerator over a course of 15 months and six other linear-accelerators from two treatment centers were also investigated using this method. The generalized shift patterns were derived from the data and used in an image registration algorithm to correct for the effect of the mechanical sag in the system. The Gamma evaluation (3%, 3 mm) technique was used to investigate the improvement in alignment of cine EPID images of a fixed field, by comparing both individual images and the sum of images in a series with the reference gantry zero image. RESULTS: The mechanical sag during gantry rotation was dependent on the gantry angle and was larger in the in-plane direction, although the patterns were not identical for various linear-accelerators. The reproducibility of measurements was within 0.2 mm over a period of 15 months. The direction of gantry rotation and SDD did not affect the results by more than 0.3 mm. Results of independent tests agreed with the algorithm within the accuracy of the measurement tools. When comparing summed images, the percentage of points with Gamma index <1 increased from 85.4% to 94.1% after correcting for the EPID sag, and to 99.3% after correction for gantry + EPID sag. CONCLUSIONS: The measurement method and algorithms introduced in this study use cine-images, are highly accurate, simple, fast, and reproducible. It tests all gantry angles and provides a suitable automatic analysis and correction tool to improve EPID dosimetry and perform comprehensive linac QA for arc treatments.


Assuntos
Radiometria/instrumentação , Erros de Configuração em Radioterapia/prevenção & controle , Gravação em Vídeo/instrumentação , Gravação em Vídeo/métodos , Ecrans Intensificadores para Raios X , Desenho de Equipamento , Análise de Falha de Equipamento , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
12.
Med Phys ; 37(5): 2269-78, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20527561

RESUMO

PURPOSE: Amorphous silicon EPIDs have been used for planar dose verification in IMRT treatments for many years. The support arm used to attach some types of EPIDs to linear accelerators can introduce inaccuracies to dosimetry measurements due to the presence of metallic parts in their structures. It is demonstrated that this uncertainty may be as large as approximately 6% of maximum image signal for large fields. In this study, a method has been described to quantify, model and correct for the effect of backscattered radiation from the EPID support arm (E-Arm type, Varian Medical Systems). METHODS: Measurements of a support arm backscatter kernel were made using several 1 x 1 cm2 6 MV pencil beam irradiations at a sample of positions over the sensitive area of the EPID in standard clinical setup and repeated with the EPID removed from the support arm but at the same positions. A curve-fit to the subtraction of EPID response obtained on and off the arm was used to define the backscatter kernel. The measured kernel was compared with a backscatter kernel obtained by Monte Carlo simulations with EGS/BEAM code. A backscatter dose prediction using the measured backscatter kernel was added to an existing EPID dose prediction model. The improvement in the agreement of the modified model predictions with EPID measurements for a number of open fields and IMRT beams were investigated by comparison to the original model results. RESULTS: Considering all functions tested to find the best functional fit to the data points, a broad Gaussian curve proved to be the optimum fit to the backscatter data. The best fit through the Monte Carlo simulated backscatter kernel was also found to be a Gaussian curve. The maximum decrease in normalized root mean squared deviation of the measured and modeled EPID image profiles for open fields was 13.7% for a 15 x 15 cm2 field with no decrease observed for a 3 x 3 cm2 (the smallest) field as it was not affected by the arm backscatter. Gamma evaluation (2%, 2 mm criteria) showed the improvement in agreement between the model and measurement results when the backscatter was incorporated. The average increase in Gamma pass rate was 2% for head and neck and 1.3% for prostate IMRT fields investigated in this study. CONCLUSIONS: The application of the backscatter kernel determined in this study improved the accuracy of dosimetry using a Varian EPID with E-arm for open fields of different sizes: Eight head and neck and seven prostate IMRT fields. Further improvement in the agreement between the model predictions and EPID measurements requires more sophisticated modeling of the backscatter.


Assuntos
Diagnóstico por Imagem/instrumentação , Eletrônica , Modelos Teóricos , Radiometria/instrumentação , Espalhamento de Radiação , Método de Monte Carlo , Radioterapia de Intensidade Modulada , Silício
13.
Phys Med Biol ; 54(10): 3173-83, 2009 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-19420428

RESUMO

The purpose of this work was to investigate the influence of a new transmission detector on 6 MV x-ray beam properties. The device, COMPASS (IBA Dosimetry, Germany), contains 1600 plane parallel ionization chambers with a detector spacing of 6.5 mm and an active volume of 0.02 cm3. Surface dose measurements were carried out using a Markus chamber and radiochromic film for a range of field sizes and source-to-surface distances (SSDs). The surface dose and dose in the build-up region for COMPASS fields were compared to open fields. For moderately narrow beam geometric conditions, the increase in surface dose was small. For the largest field size investigated (20x20 cm2) at a 90 cm SSD, the surface dose with the detector was 34.9% versus 26.8% in the open field. However, the increase in surface dose in COMPASS fields was less than that observed with a standard block tray in the field (38.7% in the above example). It was found that beyond dmax, the difference in relative dose (profiles and PDDs) between open and COMPASS fields was insignificant. The mean transmission factor of the detector was 0.967 (standard deviation=0.002) measured over a range of field sizes from 3x3 to 20x20 cm2 at SSDs from 70 cm to 90 cm. In summary, the transmission detector was found to increase the relative dose in the buildup region but had a negligible effect on the beam parameters beyond dmax.


Assuntos
Algoritmos , Radiometria/instrumentação , Radioterapia Conformacional/instrumentação , Radioterapia de Alta Energia/instrumentação , Transdutores , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Raios X
14.
Med Phys ; 35(5): 2170-9, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18561692

RESUMO

A novel, anatomic beam orientation optimization (A-BOO) algorithm is proposed to significantly improve conventional intensity-modulated radiation therapy (IMRT). The A-BOO algorithm vectorially analyses polygonal surface mesh data of contoured patient anatomy. Five optimal (5-opt) deliverable beam orientations are selected based on (1) tangential orientation bisecting the target and adjacent organ's-at-risk (OARs) to produce precipitous dose gradients between them and (2) parallel incidence with polygon features of the target volume to facilitate conformal coverage. The 5-opt plans were compared to standard five, seven, and nine equiangular-spaced beam plans (5-equi, 7-equi, 9-equi) for: (1) gastric, (2) Radiation Therapy Oncology Group (RTOG) P-0126 prostate, and (3) RTOG H-0022 oropharyngeal (stage-III, IV) cancer patients. In the gastric case, the noncoplanar 5-opt plan reduced the right kidney V 20 Gy by 32.2%, 23.2%, and 20.6% compared to plans with five, seven, and nine equiangular-spaced beams. In the prostate case, the coplanar 5-opt plan produced similar rectal sparing as the 7-equi and 9-equi plans with a reduction of the V 75, V 70, V 65, and V 60 Gy of 2.4%, 5.3%, 7.0%, and 9.5% compared to the 5-equi plan. In the stage-III and IV oropharyngeal cases, the noncoplanar 5-opt plan substantially reduced the V 30 Gy and mean dose to the contralateral parotid compared to plans with five, seven, and nine equiangular-spaced beams: (stage-III) 7.1%, 5.2%, 6.8%, and 5.1, 3.5, 3.7 Gy and (stage-IV) 10.2%, 10.2%, 9.8% and 7.0, 7.1, 7.2 Gy. The geometry-based A-BOO algorithm has been demonstrated to be robust for application to a variety of IMRT treatment sites. Beam orientations producing significant improvements in OAR sparing over conventional IMRT can be automatically produced in minutes compared to hours with existing dose-based beam orientation optimization methods.


Assuntos
Neoplasias Orofaríngeas/radioterapia , Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Neoplasias Gástricas/radioterapia , Algoritmos , Relação Dose-Resposta à Radiação , Desenho de Equipamento , Feminino , Humanos , Rim/efeitos da radiação , Masculino , Modelos Estatísticos , Radioterapia (Especialidade)/métodos , Dosagem Radioterapêutica
15.
Med Phys ; 34(10): 3951-61, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17985640

RESUMO

A fast, geometric beam angle optimization (BAO) algorithm for clinical intensity-modulated radiation therapy (IMRT) was implemented on ten localized prostate cancer patients on the Radiation Therapy Oncology Group (RTOG) 0126 protocol. The BAO algorithm computed the beam intersection volume (BIV) within the rectum and bladder using five and seven equiangular-spaced beams as a function of starting gantry angle for comparison to the V 75 Gy and V 70 Gy. A mathematical theory was presented to explain the correlation of BIV with dose and dose-volume metrics. The class solution 'W' pattern in the rectal V 75 Gy and V 70 Gy as a function of starting gantry angle using five equiangular-spaced beams (with two separate minima centered near 20 degrees and 50 degrees) was reproduced by the 5 BIV within the rectum. A strong correlation was found between the rectal 5 BIV and the rectal V 75 Gy and V 70 Gy as a function of starting gantry angle. The BAO algorithm predicted the location of the two dosimetric minima in rectal V 75 Gy and V 70 Gy (optimal starting gantry angles) to within 5 degrees. It was demonstrated that the BIV geometric variations for seven equiangular-spaced beams were too small to translate into a strong dosimetric effect in the rectal V 75 Gy and V 70 Gy. The relatively flat distribution with starting gantry angle of the bladder V 75 Gy and V 70 Gy was reproduced by the bladder five and seven BIV for each patient. A geometric BAO method based on BIV has the advantage over dosimetric BAO methods of simplicity and rapid computation time. This algorithm can be used as a standalone optimization method or act as a rapid calculation filter to reduce the search space for a dosimetric BAO method. Given the clinically infeasible computation times of many dosimetric beam orientation optimization algorithms, this robust geometric BIV algorithm has the potential to facilitate beam angle selection for prostate IMRT in clinical practice.


Assuntos
Neoplasias da Próstata/radioterapia , Radioterapia de Intensidade Modulada/instrumentação , Radioterapia de Intensidade Modulada/métodos , Algoritmos , Desenho de Equipamento , Humanos , Masculino , Modelos Estatísticos , Modelos Teóricos , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Software
16.
Radiother Oncol ; 85(2): 299-305, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17825932

RESUMO

BACKGROUND AND PURPOSE: To investigate the effects of starting gantry angle and number of equiangular-spaced beams for prostate cancer radiotherapy on the Radiation Therapy Oncology Group (RTOG) 0126 protocol using intensity-modulated radiation therapy (IMRT). MATERIALS AND METHODS: Ten localized prostate cancer patients were prescribed to 79.2Gy in 44 fractions. Static IMRT plans using five and seven equiangular-spaced beams were generated. The starting gantry angles were incremented by 5 degrees resulting in 15 (5 beams) and 11 (7 beams) plans per patient. Constant target coverage was ensured for all plans in order to isolate the variation in the rectal and bladder metrics as a function of starting gantry angle. RESULTS: The variation with starting gantry angle in rectal metrics using 5 beams was statistically significant (p<0.001) with dosimetric importance. The 5-beam rectal V 75Gy and V 70Gy demonstrated a class solution with a characteristic 'W' pattern and two optimal starting gantry angles near 20 degrees and 50 degrees . Statistically insignificant differences were observed for the bladder metrics using 5 beams. There was little dosimetric variation in the rectal and bladder metrics with 7 beams. Nearly equivalent rectal V 75Gy was achieved between 5 optimal equiangular-spaced beams starting at 20 degrees (class solution) and 7 equiangular-spaced beams starting at 0 degrees for most patients. CONCLUSIONS: The use of an optimal starting gantry angle for 5 equiangular-spaced beams, as indicated by a class solution in this study, will facilitate rectal sparing and can produce plans that are equivalent to those employing 7 equiangular-spaced beams.


Assuntos
Neoplasias da Próstata/radioterapia , Radioterapia de Intensidade Modulada/métodos , Humanos , Masculino , Dosagem Radioterapêutica , Reto , Bexiga Urinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...