Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pediatr Blood Cancer ; 71(7): e31032, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38711167

RESUMO

BACKGROUND: Angiopoietin-2 (Ang-2) is increased in the blood of patients with kaposiform lymphangiomatosis (KLA) and kaposiform hemangioendothelioma (KHE). While the genetic causes of KHE are not clear, a somatic activating NRASQ61R mutation has been found in the lesions of KLA patients. PROCEDURE: Our study tested the hypothesis that the NRASQ61R mutation drives elevated Ang-2 expression in endothelial cells. Ang-2 was measured in human endothelial progenitor cells (EPC) expressing NRASQ61R and a genetic mouse model with endothelial targeted NRASQ61R. To determine the signaling pathways driving Ang-2, NRASQ61R EPC were treated with signaling pathway inhibitors. RESULTS: Ang-2 levels were increased in EPC expressing NRASQ61R compared to NRASWT by Western blot analysis of cell lysates and ELISA of the cell culture media. Ang-2 levels were elevated in the blood of NRASQ61R mutant mice. NRASQ61R mutant mice also had reduced platelet counts and splenomegaly with hypervascular lesions, like some KLA patients. mTOR inhibitor rapamycin attenuated Ang-2 expression by NRASQ61R EPC. However, MEK1/2 inhibitor trametinib was more effective blocking increases in Ang-2. CONCLUSIONS: Our studies show that the NRASQ61R mutation in endothelial cells induces Ang-2 expression in vitro and in vivo. In cultured human endothelial cells, NRASQ61R drives elevated Ang-2 through MAP kinase and mTOR-dependent signaling pathways.


Assuntos
Angiopoietina-2 , Proteínas de Membrana , Animais , Humanos , Angiopoietina-2/genética , Angiopoietina-2/metabolismo , Camundongos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Mutação , Transdução de Sinais , Camundongos Transgênicos
2.
Pediatr Blood Cancer ; 70(4): e30219, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36683202

RESUMO

Kaposiform lymphangiomatosis (KLA) is a life-threatening rare disease that can cause substantial morbidity, mortality, and social burdens for patients and their families. Diagnosis often occurs long after initial symptoms, and there are few centers in the world with the expertise to diagnose and care for patients with the disease. KLA is a lymphatic anomaly and significant advancements have been made in understanding its pathogenesis and etiology since its first description in 2014. This review provides multidisciplinary, comprehensive, and state-of-the-art information on KLA patient presentation, diagnostic imaging, pathology, organ involvement, genetics, and pathogenesis. Finally, we describe current therapeutic approaches, important areas for research, and challenges faced by patients and their families. Further insights into the pathogenesis of KLA may advance our understanding of other vascular anomalies given that similar signaling pathways may be involved.


Assuntos
Anormalidades Linfáticas , Humanos , Transdução de Sinais
3.
J Extra Corpor Technol ; 53(1): 68-74, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33814609

RESUMO

Amiodarone is an anti-arrhythmic agent that is frequently used to treat tachycardias in critically ill adults and children. Because of physicochemical properties of amiodarone, extracorporeal membrane oxygenation (ECMO) circuits are expected to extract amiodarone from circulation, increasing the risk of therapeutic failure. The present study seeks to determine amiodarone extraction by the ECMO circuit. Amiodarone was administered to three ex vivo circuit configurations (n = 3 per configuration) to determine the effect of each circuit component on drug extraction. The circuits were primed with human blood; standard amiodarone doses were administered; and serial samples were collected over 24 hours. Additional circuits were primed with crystalloid fluid to analyze the effect of blood on extraction and to investigate circuit saturation by drug. The crystalloid circuits were dosed multiple times over 72 hours, including a massive dose at 48 hours. For both setups, the flow was set to 1 L/min. Drug was added to separate tubes containing the prime solution to serve as controls. Drug concentrations were quantified with a validated assay, and drug recovery was calculated for each sample. Mean recovery for the circuits and controls were compared to correct for drug degradation over time. Amiodarone was heavily extracted by all ECMO circuit configurations. Eight hours after dosing, mean recovery in the blood prime circuits was 13.5-22.1%. In the crystalloid prime circuits, drug recovery decreased even more rapidly, with a mean recovery of 22.0% at 30 minutes. Similarly, drug recovery decreased more quickly in the crystalloid prime controls than in the blood prime controls. Saturation was not achieved in the crystalloid prime circuits, as final amiodarone concentrations were at the lower limit of quantification. The results suggest that amiodarone is rapidly extracted by the ECMO circuit and that saturation is not achieved by standard doses. In vivo circuit extraction may cause decreased drug exposure.


Assuntos
Amiodarona , Oxigenação por Membrana Extracorpórea , Adulto , Criança , Humanos , Taxa de Depuração Metabólica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...