Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 8(8): 5416-23, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26859048

RESUMO

Germanium (Ge)-based metal-oxide-semiconductor field-effect transistors are a promising candidate for high performance, low power electronics at the 7 nm technology node and beyond. However, the availability of high quality gate oxide/Ge interfaces that provide low leakage current density and equivalent oxide thickness (EOT), robust scalability, and acceptable interface state density (D(it)) has emerged as one of the most challenging hurdles in the development of such devices. Here we demonstrate and present detailed electrical characterization of a high-κ epitaxial oxide gate stack based on crystalline SrHfO3 grown on Ge (001) by atomic layer deposition. Metal-oxide-Ge capacitor structures show extremely low gate leakage, small and scalable EOT, and good and reducible D(it). Detailed growth strategies and postgrowth annealing schemes are demonstrated to reduce Dit. The physical mechanisms behind these phenomena are studied and suggest approaches for further reduction of D(it).

2.
Nat Nanotechnol ; 10(1): 84-90, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25437745

RESUMO

The rapidly increasing global demand for energy combined with the environmental impact of fossil fuels has spurred the search for alternative sources of clean energy. One promising approach is to convert solar energy into hydrogen fuel using photoelectrochemical cells. However, the semiconducting photoelectrodes used in these cells typically have low efficiencies and/or stabilities. Here we show that a silicon-based photocathode with a capping epitaxial oxide layer can provide efficient and stable hydrogen production from water. In particular, a thin epitaxial layer of strontium titanate (SrTiO3) was grown directly on Si(001) by molecular beam epitaxy. Photogenerated electrons can be transported easily through this layer because of the conduction-band alignment and lattice match between single-crystalline SrTiO3 and silicon. The approach was used to create a metal-insulator-semiconductor photocathode that, under a broad-spectrum illumination at 100 mW cm(-2), exhibits a maximum photocurrent density of 35 mA cm(-2) and an open circuit potential of 450 mV; there was no observable decrease in performance after 35 hours of operation in 0.5 M H2SO4. The performance of the photocathode was also found to be highly dependent on the size and spacing of the structured metal catalyst. Therefore, mesh-like Ti/Pt nanostructured catalysts were created using a nanosphere lithography lift-off process and an applied-bias photon-to-current efficiency of 4.9% was achieved.

3.
Nano Lett ; 14(8): 4360-7, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25072099

RESUMO

TiO2 is being widely explored as an active resistive switching (RS) material for resistive random access memory. We report a detailed analysis of the RS characteristics of single-crystal anatase-TiO2 thin films epitaxially grown on silicon by atomic layer deposition. We demonstrate that although the valence change mechanism is responsible for the observed RS, single-crystal anatase-TiO2 thin films show electrical characteristics that are very different from the usual switching behaviors observed for polycrystalline or amorphous TiO2 and instead very similar to those found in electrochemical metallization memory. In addition, we demonstrate highly stable and reproducible quantized conductance that is well controlled by application of a compliance current and that suggests the localized formation of conducting Magnéli-like nanophases. The quantized conductance observed results in multiple well-defined resistance states suitable for implementation of multilevel memory cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...