Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Neurosci ; 6(2): 277-87, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25314588

RESUMO

Low-voltage-activated (T-type) calcium channels are important regulators of the transmission of nociceptive information in the primary afferent pathway and finding ligands that modulate these channels is a key focus of the drug discovery field. Recently, we characterized a set of novel compounds with mixed cannabinoid receptor/T-type channel blocking activity and examined their analgesic effects in animal models of pain. Here, we have built on these previous findings and synthesized a new series of small organic compounds. We then screened them using whole-cell voltage clamp techniques to identify the most potent T-type calcium channel inhibitors. The two most potent blockers (compounds 9 and 10) were then characterized using radioligand binding assays to determine their affinity for CB1 and CB2 receptors. The structure-activity relationship and optimization studies have led to the discovery of a new T-type calcium channel blocker, compound 9. Compound 9 was efficacious in mediating analgesia in mouse models of acute inflammatory pain and in reducing tactile allodynia in the partial nerve ligation model. This compound was shown to be ineffective in Cav3.2 T-type calcium channel null mice at therapeutically relevant concentrations, and it caused no significant motor deficits in open field tests. Taken together, our data reveal a novel class of compounds whose physiological and therapeutic actions are mediated through block of Cav3.2 calcium channels.


Assuntos
Analgésicos/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Antagonistas de Receptores de Canabinoides/farmacologia , Analgésicos/química , Animais , Bloqueadores dos Canais de Cálcio/química , Canais de Cálcio Tipo T/genética , Canais de Cálcio Tipo T/metabolismo , Antagonistas de Receptores de Canabinoides/química , Linhagem Celular , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Humanos , Hiperalgesia/tratamento farmacológico , Hiperalgesia/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Dor/tratamento farmacológico , Dor/fisiopatologia , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/metabolismo , Nervo Isquiático/lesões , Tato
2.
Eur J Med Chem ; 69: 881-907, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24125850

RESUMO

There is growing interest in using cannabinoid receptor 2 (CB2) agonists for the treatment of neuropathic pain and other indications. In continuation of our ongoing program aiming for the development of new small molecule cannabinoid ligands, we have synthesized a novel series of carbazole and γ-carboline derivatives. The affinities of the newly synthesized compounds were determined by a competitive radioligand displacement assay for human CB2 cannabinoid receptor and rat CB1 cannabinoid receptor. Functional activity and selectivity at human CB1 and CB2 receptors were characterized using receptor internalization and [(35)S]GTP-γ-S assays. The structure-activity relationship and optimization studies of the carbazole series have led to the discovery of a non-selective CB1 and CB2 agonist, compound 4. Our subsequent research efforts to increase CB2 selectivity of this lead compound have led to the discovery of CB2 selective compound 64, which robustly internalized CB2 receptors. Compound 64 had potent inhibitory effects on pain hypersensitivity in a rat model of neuropathic pain. Other potent and CB2 receptor-selective compounds, including compounds 63 and 68, and a selective CB1 agonist, compound 74 were also discovered. In addition, we identified the CB2 ligand 35 which failed to promote CB2 receptor internalization and inhibited compound CP55,940-induced CB2 internalization despite a high CB2 receptor affinity. The present study provides novel tricyclic series as a starting point for further investigations of CB2 pharmacology and pain treatment.


Assuntos
Carbazóis/química , Carbazóis/farmacologia , Neuralgia/tratamento farmacológico , Receptor CB1 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/agonistas , Animais , Carbazóis/síntese química , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Ratos , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Relação Estrutura-Atividade
3.
J Pharm Sci ; 102(2): 352-64, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23192786

RESUMO

Enabling formulations based on hydroxypropyl-ß-cyclodextrins (HPßCD), micellar preparation, and liposomes have been designed to deliver the racemic mixture of a lipophilic cannabinoid type 2 agonist, MDA7. The antiallodynic effects of MDA7 formulated in these three different systems were compared after intravenous (i.v.) administration in rats. Stoichiometry of the inclusion complex formed by MDA7 in HPßCD was determined by continuous variation plot, electrospray ionization-mass spectrometry (ESI-MS) analysis, phase solubility, and nuclear magnetic resonance studies and indicate formation of exclusively 1:1 adduct. Morphology and particle sizes determined by dynamic light scattering and transmission electron microscopy show the presence of a homogeneous population of closed round-shaped oligolamellar MDA7 containing liposomes, with an average size of 118 nm [polydispersity index (PDI) 0.03]. Monodisperse micelles exhibited an average size of 14 nm (PDI 0.09). HPßCD-based formulation administrated in vivo was composed of two discrete particles populations with a narrow size distribution of 3 nm (PDI 0.04) and 510 nm (PDI 0.02). HPßCD-based formulation dramatically improved antiallodynic effect of MDA7 in comparison with the liposomes preparation. Through inclusion complexation and possibly formation of aggregates, HPßCD can enhance the aqueous solubility of lipophilic drugs, thereby improving their bioavailability for i.v. administration.


Assuntos
Benzofuranos/química , Química Farmacêutica/métodos , Micelas , Piperidinas/química , Receptor CB2 de Canabinoide/agonistas , beta-Ciclodextrinas/química , 2-Hidroxipropil-beta-Ciclodextrina , Animais , Benzofuranos/farmacologia , Lipossomos , Masculino , Piperidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento , beta-Ciclodextrinas/farmacologia
4.
Tetrahedron Lett ; 52(43): 5656-5658, 2011 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-21966033

RESUMO

A procedure for benzylic Suzuki-Miyaura cross-coupling under microwave conditions has been developed. These conditions allowed for heterocyclic compounds to be coupled. Optimum conditions found were Pd(OAc)(2), JohnPhos as the catalyst and ligand, potassium carbonate as base, and DMF as the solvent. Using these conditions, a library of structurally diverse compounds was synthesized.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...