Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
2.
Front Neurol ; 14: 1272425, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37869137

RESUMO

Introduction: Magnetic-resonance-guided focused ultrasound (MRgFUS) thalamotomy uses multiple converging high-energy ultrasonic beams to produce thermal lesions in the thalamus. Early postoperative MR imaging demonstrates the location and extent of the lesion, but there is no consensus on the utility or frequency of postoperative imaging. We aimed to evaluate the evolution of MRgFUS lesions and describe the incidence, predictors, and clinical effects of lesion persistence in a large patient cohort. Methods: A total of 215 unilateral MRgFUS thalamotomy procedures for essential tremor (ET) by a single surgeon were retrospectively analyzed. All patients had MR imaging 1 day postoperatively; 106 had imaging at 3 months and 32 had imaging at 1 year. Thin cut (2 mm) axial and coronal T2-weighted MRIs at these timepoints were analyzed visually on a binary scale for lesion presence and when visible, lesion volumes were measured. SWI and DWI sequences were also analyzed when available. Clinical outcomes including tremor scores and side effects were recorded at these same time points. We analyzed if patient characteristics (age, skull density ratio), preoperative tremor score, and sonication parameters influenced lesion evolution and if imaging characteristics correlated with clinical outcomes. Results: Visible lesions were present in all patients 1 day post- MRgFUS and measured 307.4 ± 128.7 mm3. At 3 months, residual lesions (excluding patients where lesions were not visible) were 83.6% smaller and detectable in only 54.7% of patients (n = 58). At 1 year, residual lesions were detected in 50.0% of patients (n = 16) and were 90.7% smaller than 24 h and 46.5% smaller than 3 months. Lesions were more frequently visible on SWI (100%, n = 17), DWI (n = 38, 97.4%) and ADC (n = 36, 92.3%). At 3 months, fewer treatment sonications, higher maximum power, and greater distance between individual sonications led to larger lesion volumes. Volume at 24 h did not predict if a lesion was visible later. Lesion visibility at 3 months predicted sensory side effects but was not correlated with tremor outcomes. Discussion: Overall, lesions are visible on T2-weighted MRI in about half of patients at both 3 months and 1 year post-MRgFUS thalamotomy. Certain sonication parameters significantly predicted persistent volume, but residual lesions did not correlate with tremor outcomes.

3.
Mov Disord ; 38(10): 1962-1967, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37539721

RESUMO

BACKGROUND: Magnetic resonance guided focused ultrasound (MRgFUS) is United States Food and Drug Administration approved for the treatment of tremor-dominant Parkinson's disease (TdPD), but only limited studies have been described in practice. OBJECTIVES: To report the largest prospective experience of unilateral MRgFUS thalamotomy for the treatment of medically refractory TdPD. METHODS: Clinical outcomes of 48 patients with medically refractory TdPD who underwent MRgFUS thalamotomy were evaluated. Tremor outcomes were assessed using the Fahn-Tolosa-Marin scale and adverse effects were categorized using a structured questionnaire and clinical exam at 1 month (n = 44), 3 months (n = 34), 1 year (n = 22), 2 years (n = 5), and 3 years (n = 2). Patients underwent magnetic resonance imaging <24 hours post-procedure. RESULTS: Significant tremor control persisted at all follow-ups (P < 0.001). All side effects were mild. At 3 months, these included gait imbalance (38.24%), sensory deficits (26.47%), motor weakness (17.65%), dysgeusia (5.88%), and dysarthria (5.88%), with some persisting at 1 year. CONCLUSIONS: MRgFUS thalamotomy is an effective treatment for sustained tremor control in patients with TdPD. © 2023 International Parkinson and Movement Disorder Society.


Assuntos
Tremor Essencial , Doença de Parkinson , Humanos , Tremor/etiologia , Tremor/cirurgia , Doença de Parkinson/complicações , Doença de Parkinson/cirurgia , Estudos Prospectivos , Tálamo/cirurgia , Resultado do Tratamento , Imageamento por Ressonância Magnética/métodos
4.
J Control Release ; 358: 498-509, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37127076

RESUMO

The therapeutic potential of many gene therapies is limited by their inability to cross the blood brain barrier (BBB). While intranasal administration of plasmid DNA nanoparticles (NPs) offers a non-invasive approach to bypass the BBB, it is not targeted to disease-relevant brain regions. Here, our goal was to determine whether focused ultrasound (FUS) can enrich intranasal delivery of our plasmid DNA NPs to target deeper brain regions, in this case the regions most affected in Parkinson's disease. Combining FUS with intranasal administration resulted in enhanced delivery of DNA NPs to the rodent brain, by recruitment and transfection of microglia. FUS increased transgene expression by over 3-fold after intranasal administration compared to intravenous administration. Additionally, FUS with intranasal delivery increased transgene expression in the sonicated hemisphere by over 80%, altered cellular transfection patterns at the sonication sites, and improved penetration of plasmid NPs into the brain parenchyma (with a 1-fold and 3-fold increase in proximity of transgene expression to neurons in the forebrain and midbrain respectively, and a 40% increase in proximity of transgene expression to dopaminergic neurons in the substantia nigra). These results provide evidence in support of using FUS to improve transgene expression after intranasal delivery of non-viral gene therapies.


Assuntos
Encéfalo , Nanopartículas , Administração Intranasal , Encéfalo/metabolismo , Barreira Hematoencefálica/metabolismo , DNA , Transgenes , Microbolhas , Sistemas de Liberação de Medicamentos/métodos
5.
Bioeng Transl Med ; 8(2): e10408, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36925708

RESUMO

Effective chemotherapy delivery for glioblastoma multiforme (GBM) is limited by drug transport across the blood-brain barrier and poor efficacy of single agents. Polymer-drug conjugates can be used to deliver drug combinations with a ratiometric dosing. However, the behaviors and effectiveness of this system have never been well investigated in GBM models. Here, we report flexible conjugates of hyaluronic acid (HA) with camptothecin (CPT) and doxorubicin (DOX) delivered into the brain using focused ultrasound (FUS). In vitro toxicity assays reveal that DOX-CPT exhibited synergistic action against GBM in a ratio-dependent manner when delivered as HA conjugates. FUS is employed to improve penetration of DOX-HA-CPT conjugates into the brain in vivo in a murine GBM model. Small-angle x-ray scattering characterizations of the conjugates show that the DOX:CPT ratio affects the polymer chain flexibility. Conjugates with the highest flexibility yield the highest efficacy in treating mouse GBM in vivo. Our results demonstrate the association of FUS-enhanced delivery of combination chemotherapy and the drug-ratio-dependent flexibility of the HA conjugates. Drug ratio in the polymer nanocomplex may thus be employed as a key factor to modulate FUS drug delivery efficiency via controlling the polymer flexibility. Our characterizations also highlight the significance of understanding the flexibility of drug carriers in ultrasound-mediated drug delivery systems.

6.
Stereotact Funct Neurosurg ; 101(1): 60-67, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36696893

RESUMO

Magnetic resonance-guided high-intensity focused ultrasound (MRgFUS) is a rapidly developing technique used for tremor relief in tremor-predominant Parkinson's disease (PD) and essential tremor that has demonstrated successful results. Here, we describe the neuropathological findings in a woman who died from a fall 10 days after successful MRgFUS for tremor-predominant PD. Histological analysis demonstrates the characteristic early postoperative MRI findings including 3 distinct zones on T2-weighted imaging: (1) a hypointense core, (2) a hyperintense region with hypointense rim, and (3) a slightly hyperintense, poorly marginated surrounding area. Histopathological analyses also demonstrate the suspected cellular processes composing each of these regions including central hemorrhagic necrosis with surrounding cytotoxic edema and a rim of mostly unaffected vasogenic edema with some reactive and reparative processes. Overall, this case demonstrates the correlation of postoperative imaging findings with the subacute neuropathological findings after MRgFUS for PD.


Assuntos
Tremor Essencial , Doenças do Sistema Nervoso , Doença de Parkinson , Feminino , Humanos , Tremor , Resultado do Tratamento , Tálamo/cirurgia , Imageamento por Ressonância Magnética/métodos , Tremor Essencial/cirurgia , Doença de Parkinson/cirurgia
7.
Epilepsy Curr ; 22(3): 156-160, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36474831

RESUMO

Patients with drug-resistant epilepsy (DRE) who are not surgical candidates have unacceptably few treatment options. Benefits of implanted electrostimulatory devices are still largely palliative, and many patients are not eligible to receive them. A new form of neuromodulation, low intensity focused ultrasound (LIFUS), is rapidly emerging, and has many potential intracranial applications. LIFUS can noninvasively target tissue with a spatial distribution of highly focused acoustic energy that ensures a therapeutic effect only at the geometric focus of the transducer. A growing literature over the past several decades supports the safety of LIFUS and its ability to noninvasively modulate neural tissue in animals and humans by positioning the beam over various brain regions to target motor, sensory, and visual cortices as well as frontal eye fields and even hippocampus. Several preclinical studies have demonstrated the ability of LIFUS to suppress seizures in epilepsy animal models without damaging tissue. Resection after sonication to the antero-mesial lobe showed no pathologic changes in epilepsy patients, and this is currently being trialed in serial treatments to the hippocampus in DRE. Low intensity focused ultrasound is a promising, novel, incisionless, and radiation-free alternative form of neuromodulation being investigated for epilepsy. If proven safe and effective, it could be used to target lateral cortex as well as deep structures without causing damage, and is being studied extensively to treat a wide variety of neurologic and psychiatric disorders including epilepsy.

8.
Biomolecules ; 12(7)2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35883506

RESUMO

Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by the accumulation of amyloid plaques and hyperphosphorylated tau in the brain. Currently, therapeutic agents targeting amyloid appear promising for AD, however, delivery to the CNS is limited due to the blood-brain-barrier (BBB). Focused ultrasound (FUS) is a method to induce a temporary opening of the BBB to enhance the delivery of therapeutic agents to the CNS. In this study, we evaluated the acute effects of FUS and whether the use of FUS-induced BBB opening enhances the delivery of 07/2a mAb, an anti-pyroglutamate-3 Aß antibody, in aged 24 mo-old APP/PS1dE9 transgenic mice. FUS was performed either unilaterally or bilaterally with mAb infusion and the short-term effect was analyzed 4 h and 72 h post-treatment. Quantitative analysis by ELISA showed a 5-6-fold increase in 07/2a mAb levels in the brain at both time points and an increased brain-to-blood ratio of the antibody. Immunohistochemistry demonstrated an increase in IgG2a mAb detection particularly in the cortex, enhanced immunoreactivity of resident Iba1+ and phagocytic CD68+ microglial cells, and a transient increase in the infiltration of Ly6G+ immune cells. Cerebral microbleeds were not altered in the unilaterally or bilaterally sonicated hemispheres. Overall, this study shows the potential of FUS therapy for the enhanced delivery of CNS therapeutics.


Assuntos
Doença de Alzheimer , Barreira Hematoencefálica , Doença de Alzheimer/tratamento farmacológico , Animais , Encéfalo/fisiologia , Imunidade , Imunoglobulina G/uso terapêutico , Camundongos , Placa Amiloide
9.
J Control Release ; 336: 443-456, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34186148

RESUMO

Pyroglutamate-3 amyloid-ß (pGlu3 Aß) is an N-terminally modified, pathogenic form of amyloid-ß that is present in cerebral amyloid plaques and vascular deposits. Here, we used focused ultrasound (FUS) with microbubbles to enhance the intravenous delivery of an Fc-competent anti-pGlu3 Aß monoclonal antibody, 07/2a mAb, across the blood brain barrier (BBB) in an attempt to improve Aß removal and memory in aged APP/PS1dE9 mice, an Alzheimer's disease (AD)-like model of amyloidogenesis. First, we demonstrated that bilateral hippocampal FUS-BBB disruption (FUS-BBBD) led to a 5.5-fold increase of 07/2a mAb delivery to the brains compared to non-sonicated mice 72 h following a single treatment. Then, we determined that three weekly treatments with 07/2a mAb alone improved spatial learning and memory in aged, plaque-rich APP/PS1dE9 mice, and that this improvement occurred faster and in a higher percentage of animals when combined with FUS-BBBD. Mice given the combination treatment had reduced hippocampal plaque burden compared to PBS-treated controls. Furthermore, synaptic protein levels were higher in hippocampal synaptosomes from mice given the combination treatment compared to sham controls, and there were more CA3 synaptic puncta labeled in the APP/PS1dE9 mice given the combination treatment compared to those given mAb alone. Plaque-associated microglia were present in the hippocampi of APP/PS1dE9 mice treated with 07/2a mAb with and without FUS-BBBD. However, we discovered that plaque-associated Ly6G+ monocytes were only present in the hippocampi of APP/PS1dE9 mice that were given FUS-BBBD alone or even more so, the combination treatment. Lastly, FUS-BBBD did not increase the incidence of microhemorrhage in mice with or without 07/2a mAb treatment. Our findings suggest that FUS is a useful tool to enhance delivery and efficacy of an anti-pGlu3 Aß mAb for immunotherapy either via an additive effect or an independent mechanism. We revealed a potential novel mechanism wherein the combination of 07/2a mAb with FUS-BBBD led to greater monocyte infiltration and recruitment to plaques in this AD-like model. Overall, these effects resulted in greater plaque removal, sparing of synapses and improved cognitive function without causing overt damage, suggesting the possibility of FUS-BBBD as a noninvasive method to increase the therapeutic efficacy of drugs or biologics in AD patients.


Assuntos
Doença de Alzheimer , Idoso , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Placa Amiloide , Ácido Pirrolidonocarboxílico
10.
Drug Deliv Transl Res ; 10(5): 1507-1516, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32307675

RESUMO

The effect of local anesthetics, particularly those which are hydrophilic, such as tetrodotoxin, is impeded by tissue barriers that restrict access to individual nerve cells. Methods of enhancing penetration of tetrodotoxin into nerve include co-administration with chemical permeation enhancers, nanoencapsulation, and insonation with very low acoustic intensity ultrasound and microbubbles. In this study, we examined the effect of acoustic intensity on nerve block by tetrodotoxin and compared it to the effect on nerve block by bupivacaine, a more hydrophobic local anesthetic. Anesthetics were applied in peripheral nerve blockade in adult Sprague-Dawley rats. Insonation with 1-MHz ultrasound at acoustic intensity greater than 0.5 W/cm2 improved nerve block effectiveness, increased nerve block reliability, and prolonged both sensory and motor nerve blockade mediated by the hydrophilic ultra-potent local anesthetic, tetrodotoxin. These effects were not enhanced by microbubbles. There was minimal or no tissue injury from ultrasound treatment. Insonation did not enhance nerve block from bupivacaine. Using an in vivo model system of local anesthetic delivery, we studied the effect of acoustic intensity on insonation-mediated drug delivery of local anesthetics to the peripheral nerve. We found that insonation alone (at intensities greater than 0.5 W/cm2) enhanced nerve blockade mediated by the hydrophilic ultra-potent local anesthetic, tetrodotoxin. Graphical abstract.


Assuntos
Anestesia Local , Bupivacaína , Bloqueio Nervoso/métodos , Ultrassom , Anestésicos Locais/administração & dosagem , Animais , Bupivacaína/administração & dosagem , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes
11.
Ultrasound Med Biol ; 46(5): 1270-1274, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32088061

RESUMO

Pulsed low-intensity focused ultrasound (PLIFUS) has shown promise in inducing neuromodulation in several animal and human studies. Therefore, it is of clinical interest to develop experimental platforms to test repetitive PLIFUS as a therapeutic modality in humans with neurologic disorders. In the study described here, our aim was to develop a laboratory-built experimental device platform intended to deliver repetitive PLIFUS across the hippocampus in seizure onset zones of patients with drug-resistant temporal lobe epilepsy. The system uses neuronavigation targeting over multiple therapeutic sessions. PLIFUS (548 kHz) was emitted across multiple hippocampal targets in a human subject with temporal lobe epilepsy using a mechanically steered piezoelectric transducer. Stimulation was delivered up to 2.25 W/cm2 spatial peak temporal average intensity (free-field equivalent), with 36%-50% duty cycle, 500-ms sonications and 7-s inter-stimulation intervals lasting 140 s per target and repeated for multiple sessions. A first-in-human PLIFUS course of treatment was successfully delivered using the device platform with no adverse events.


Assuntos
Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/terapia , Hipocampo/diagnóstico por imagem , Terapia por Ultrassom/métodos , Adulto , Animais , Feminino , Humanos , Imageamento por Ressonância Magnética , Neuronavegação/métodos , Terapia por Ultrassom/efeitos adversos
12.
Ultrasound Med Biol ; 45(7): 1850-1856, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31060860

RESUMO

Focused ultrasound single-element piezoelectric transducers constitute a promising method to deliver ultrasound to the brain in low-intensity applications, but are subject to defocusing and high attenuation because of transmission through the skull. Here, a novel virtual brain projection method is used to superimpose a magnetic resonance image of the brain in ex vivo human skulls to provide targets during trans-skull focused ultrasound single-element piezoelectric transducer pressure field mapping. Positions of the transducer, skull and hydrophone are tracked in real time using a stereoscopic navigation camera and 3-D Slicer software. Virtual targets of the left dorsolateral prefrontal cortex, left hippocampus and cerebellar vermis were chosen to illustrate the method's flexibility in evaluating focal-zone beam distortion and attenuation. The regions are of interest as non-invasive brain stimulation targets in the treatment of neuropsychiatric disorders via repeated ultrasound exposure. The technical approach can facilitate the assessment of transcranial ultrasound device operator positioning reliability, intracranial beam behavior and computational model validation.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Simulação por Computador , Imageamento Tridimensional/métodos , Ultrassonografia Doppler Transcraniana/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Transdutores
14.
Ultrasound Med Biol ; 44(12): 2609-2624, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30201425

RESUMO

Thermal ablation of solid tumors via focused ultrasound (FUS) is a non-invasive image-guided alternative to conventional surgical resection. However, the usefulness of the technique is limited in vascularized organs because of convection of heat, resulting in long sonication times and unpredictable thermal lesion formation. Acoustic cavitation has been found to enhance heating but requires use of exogenous nuclei and sufficient acoustic monitoring. In this study, we employed phase-shift nanoemulsions (PSNEs) to promote cavitation and incorporated passive acoustic mapping (PAM) alongside conventional magnetic resonance imaging (MRI) thermometry within the bore of a clinical MRI scanner. Simultaneous PAM and MRI thermometry were performed in an in vivo rabbit tumor model, with and without PSNE to promote cavitation. Vaporization and cavitation of the nanoemulsion could be detected using PAM, which led to accelerated heating, monitored with MRI thermometry. The maximum heating assessed from MRI was well correlated with the integrated acoustic emissions, illustrating cavitation-enhanced heating. Examination of tissue revealed thermal lesions that were larger in the presence of PSNE, in agreement with the thermometry data. Using fixed exposure conditions over 94 sonications in multiple animals revealed an increase in the mean amplitude of acoustic emissions and resulting temperature rise, but with significant variability between sonications, further illustrating the need for real-time monitoring. The results indicate the utility of combined PAM and MRI for monitoring of tumor ablation and provide further evidence for the ability of PSNEs to promote cavitation-enhanced lesioning.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Imageamento por Ressonância Magnética/métodos , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/cirurgia , Termometria/métodos , Animais , Modelos Animais de Doenças , Masculino , Coelhos
15.
Phys Med Biol ; 63(15): 155017, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29968579

RESUMO

Focused ultrasound is now capable of noninvasively penetrating the intact human skull and delivering energy to specific areas of the brain with millimeter accuracy. The ultrasound energy is supplied in high-intensities to create brain lesions or at low-intensities to produce reversible physiological interventions. Conducting acoustic emission detection (AED) and electroencephalography (EEG) during transcranial focused ultrasound may lead to several new brain treatment and research applications. This study investigates the feasibility of using a novel scalp senor for acquiring concurrent AED and EEG during clinical transcranial ultrasound. A piezoelectric disk is embedded in a plastic cup EEG electrode to form the sensor. The sensor is coupled to the head via an adhesive/conductive gel-dot. Components of the sensor prototype are tested for AED and EEG signal quality in a bench top investigation with a functional ex vivo skull phantom.


Assuntos
Eletroencefalografia/instrumentação , Couro Cabeludo/fisiologia , Terapia por Ultrassom/instrumentação , Ultrassonografia/instrumentação , Encéfalo/fisiologia , Eletrodos , Eletroencefalografia/métodos , Humanos , Imagens de Fantasmas , Terapia por Ultrassom/métodos , Ultrassonografia/métodos
16.
Phys Med Biol ; 63(6): 065008, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29459494

RESUMO

Previous work has demonstrated that passive acoustic imaging may be used alongside MRI for monitoring of focused ultrasound therapy. However, past implementations have generally made use of either linear arrays originally designed for diagnostic imaging or custom narrowband arrays specific to in-house therapeutic transducer designs, neither of which is fully compatible with clinical MR-guided focused ultrasound (MRgFUS) devices. Here we have designed an array which is suitable for use within an FDA-approved MR-guided transcranial focused ultrasound device, within the bore of a 3 Tesla clinical MRI scanner. The array is constructed from 5 × 0.4 mm piezoceramic disc elements arranged in pseudorandom fashion on a low-profile laser-cut acrylic frame designed to fit between the therapeutic elements of a 230 kHz InSightec ExAblate 4000 transducer. By exploiting thickness and radial resonance modes of the piezo discs the array is capable of both B-mode imaging at 5 MHz for skull localization, as well as passive reception at the second harmonic of the therapy array for detection of cavitation and 3D passive acoustic imaging. In active mode, the array was able to perform B-mode imaging of a human skull, showing the outer skull surface with good qualitative agreement with MR imaging. Extension to 3D showed the array was able to locate the skull within ±2 mm/2° of reference points derived from MRI, which could potentially allow registration of a patient to the therapy system without the expense of real-time MRI. In passive mode, the array was able to resolve a point source in 3D within a ±10 mm region about each axis from the focus, detect cavitation (SNR ~ 12 dB) at burst lengths from 10 cycles to continuous wave, and produce 3D acoustic maps in a flow phantom. Finally, the array was used to detect and map cavitation associated with microbubble activity in the brain in nonhuman primates.


Assuntos
Acústica , Encéfalo/diagnóstico por imagem , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Crânio/diagnóstico por imagem , Ultrassonografia/métodos , Animais , Humanos , Macaca mulatta , Masculino , Microbolhas
18.
Proc Natl Acad Sci U S A ; 114(48): E10281-E10290, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29133392

RESUMO

Cavitation-facilitated microbubble-mediated focused ultrasound therapy is a promising method of drug delivery across the blood-brain barrier (BBB) for treating many neurological disorders. Unlike ultrasound thermal therapies, during which magnetic resonance thermometry can serve as a reliable treatment control modality, real-time control of modulated BBB disruption with undetectable vascular damage remains a challenge. Here a closed-loop cavitation controlling paradigm that sustains stable cavitation while suppressing inertial cavitation behavior was designed and validated using a dual-transducer system operating at the clinically relevant ultrasound frequency of 274.3 kHz. Tests in the normal brain and in the F98 glioma model in vivo demonstrated that this controller enables reliable and damage-free delivery of a predetermined amount of the chemotherapeutic drug (liposomal doxorubicin) into the brain. The maximum concentration level of delivered doxorubicin exceeded levels previously shown (using uncontrolled sonication) to induce tumor regression and improve survival in rat glioma. These results confirmed the ability of the controller to modulate the drug delivery dosage within a therapeutically effective range, while improving safety control. It can be readily implemented clinically and potentially applied to other cavitation-enhanced ultrasound therapies.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/terapia , Doxorrubicina/análogos & derivados , Sistemas de Liberação de Medicamentos/métodos , Glioma/terapia , Terapia por Ultrassom/métodos , Acústica/instrumentação , Animais , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacocinética , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Carbocianinas/química , Carbocianinas/farmacocinética , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Modelos Animais de Doenças , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos/instrumentação , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacocinética , Glioma/diagnóstico por imagem , Glioma/metabolismo , Glioma/patologia , Hipocampo/diagnóstico por imagem , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Proteínas Luminescentes/química , Proteínas Luminescentes/farmacocinética , Imageamento por Ressonância Magnética , Masculino , Microbolhas , Terapia de Alvo Molecular , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Polietilenoglicóis/farmacologia , Ratos , Ratos Sprague-Dawley , Transdutores , Ondas Ultrassônicas
19.
Annu Int Conf IEEE Eng Med Biol Soc ; 2017: 1966-1969, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29060279

RESUMO

A batteryless implantable radiofrequency lesioning (RFL) device powered by magnetic coupling is presented. The implant is composed of bipolar RFL electrodes, an energy-receiving coil, and a resonant capacitor circuit for maximizing the received power and providing an appropriate voltage for the electrodes. A 40-cm transmitting coil designed to wrap around the patient's body is used to generate a uniform magnetic field in a large volume so precise coil alignment is not necessary. The transmitting coil is divided to 24 segments by resonant capacitors to significantly reduce the excitation voltage to a safe level. The system was tested using ex-vivo chicken muscle tissue. Experimental results show that with a transmitting coil excitation of 1.2 Arms, the implant can lesion the muscle tissue by achieving a temperature of 55 °C. When the excitation increased to 1.6 Arms, the tissue temperature was increased to 83 °C. FEA simulation results demonstrate that the human body SAR is lower than the safety limit of 2 W kg-1 suggested by international guidelines when the excitation is 1.6 Arms.


Assuntos
Próteses e Implantes , Eletrodos , Humanos , Magnetismo , Tecnologia sem Fio
20.
Phys Med Biol ; 62(15): 6144-6163, 2017 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-28590938

RESUMO

Focused ultrasound (FUS) has the potential to enable precise, image-guided noninvasive surgery for the treatment of cancer in which tumors are identified and destroyed in a single integrated procedure. However, success of the method in highly vascular organs has been limited due to heat losses to perfusion, requiring development of techniques to locally enhance energy absorption and heating. In addition, FUS procedures are conventionally monitored using MRI, which provides excellent anatomical images and can map temperature, but is not capable of capturing the full gamut of available data such as the acoustic emissions generated during this inherently acoustically-driven procedure. Here, we employed phase-shift nanoemulsions (PSNE) embedded in tissue phantoms to promote cavitation and hence temperature rise induced by FUS. In addition, we incorporated passive acoustic mapping (PAM) alongside simultaneous MR thermometry in order to visualize both acoustic emissions and temperature rise, within the bore of a full scale clinical MRI scanner. Focal cavitation of PSNE could be resolved using PAM and resulted in accelerated heating and increased the maximum elevated temperature measured via MR thermometry compared to experiments without nanoemulsions. Over time, the simultaneously acquired acoustic and temperature maps show translation of the focus of activity towards the FUS transducer, and the magnitude of the increase in cavitation and focal shift both increased with nanoemulsion concentration. PAM results were well correlated with MRI thermometry and demonstrated greater sensitivity, with the ability to detect cavitation before enhanced heating was observed. The results suggest that PSNE could be beneficial for enhancement of thermal focused ultrasound therapies and that PAM could be a critical tool for monitoring this process.


Assuntos
Acústica , Emulsões , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Imageamento por Ressonância Magnética/métodos , Nanotecnologia/métodos , Imagens de Fantasmas , Termometria/métodos , Humanos , Espectroscopia de Ressonância Magnética , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...