Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Sports Med ; 35(7): 559-65, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24234011

RESUMO

An interesting finding from eccentric exercise training interventions is the presence of muscle hypertrophy without changes in maximum concentric strength and/or power. The lack of improvements in concentric strength and/or power could be due to long lasting suppressive effects on muscle force production following eccentric training. Thus, improvements in concentric strength and/or power might not be detected until muscle tissue has recovered (e. g., several weeks post-training). We evaluated alterations in muscular structure (rectus-femoris, RF, and vastus lateralis, VL, thickness and pennation angles) and maximum concentric cycling power (Pmax) 1-week following 8-weeks of eccentric cycling training (2×/week; 5-10.5 min; 20-55% of Pmax). Pmax was assessed again at 8-weeks post-training. At 1 week post-training, RF and VL thickness increased by 24±4% and 13±2%, respectively, and RF and VL pennation angles increased by 31±4% and 13±1%, respectively (all P<0.05). Compared to pre-training values, Pmax increased by 5±1% and 9±2% at 1 and 8 weeks post-training, respectively (both P<0.05). These results demonstrate that short-duration high-intensity eccentric cycling can be a time-effective intervention for improving muscular structure and function in the lower body of healthy individuals. The larger Pmax increase detected at 8-weeks post-training implies that sufficient recovery might be necessary to fully detect changes in muscular power after eccentric cycling training.


Assuntos
Ciclismo/fisiologia , Força Muscular/fisiologia , Educação Física e Treinamento/métodos , Músculo Quadríceps/anatomia & histologia , Músculo Quadríceps/fisiologia , Adulto , Feminino , Frequência Cardíaca , Humanos , Masculino , Contração Muscular/fisiologia , Percepção , Esforço Físico , Adulto Jovem
2.
Gait Posture ; 22(3): 233-9, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16214663

RESUMO

Assessments of changes in gait stability due to aging and disease are predominantly based on lower extremity kinematic and kinetic data. These gait changes are also often based on comparisons at preferred speed only. The purpose of this experiment was to: (1) examine age-related changes in range of motion and coordination of segments of the upper body during locomotion; and (2) investigate the effects of a systematic walking velocity manipulation on rotational motion and coordination. Participants (n=30) walked on a motor driven treadmill at speeds ranging from 0.2 to 1.8m/s and were divided into three groups with mean ages of 23.3, 49.3 and 72.6 years, respectively. Seven high-speed infrared cameras were used to record three-dimensional kinematics of the pelvis, trunk and head. Dependent variables were amplitude of segmental and joint rotations, as well as relative phase to assess coordination between segments. Although no differences in stride parameters were found between the groups, age-related changes in movement amplitude in response to speed manipulations were observed for all segments and joints. Pelvic rotations in sagittal, frontal and transverse planes of motion were systematically reduced with age. Older individuals showed reduced trunk flexion-extension in the sagittal plane and increased trunk axial rotation in the transverse plane. Coordination analysis showed reduced compensatory movement between pelvis and trunk in older individuals. These findings support the importance of systematic manipulation of walking velocity and three-dimensional upper body kinematics in assessing age-related changes in locomotor stability and adaptability.


Assuntos
Adaptação Fisiológica , Envelhecimento/fisiologia , Marcha , Caminhada/fisiologia , Adulto , Idoso , Fenômenos Biomecânicos , Humanos , Pessoa de Meia-Idade , Movimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...