Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioanalysis ; 15(14): 773-814, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37526071

RESUMO

The 2022 16th Workshop on Recent Issues in Bioanalysis (WRIB) took place in Atlanta, GA, USA on September 26-30, 2022. Over 1000 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 16th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy, cell therapy and vaccines. Moreover, in-depth workshops on ICH M10 BMV final guideline (focused on this guideline training, interpretation, adoption and transition); mass spectrometry innovation (focused on novel technologies, novel modalities, and novel challenges); and flow cytometry bioanalysis (rising of the 3rd most common/important technology in bioanalytical labs) were the special features of the 16th edition. As in previous years, WRIB continued to gather a wide diversity of international, industry opinion leaders and regulatory authority experts working on both small and large molecules as well as gene, cell therapies and vaccines to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance, and achieving scientific excellence on bioanalytical issues. This 2022 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2022 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 3) covers the recommendations on Gene Therapy, Cell therapy, Vaccines and Biotherapeutics Immunogenicity. Part 1 (Mass Spectrometry and ICH M10) and Part 2 (LBA, Biomarkers/CDx and Cytometry) are published in volume 15 of Bioanalysis, issues 16 and 15 (2023), respectively.


Assuntos
Medicamentos sob Prescrição , Tecnologia , Bioensaio/métodos , Biomarcadores/análise , Terapia Baseada em Transplante de Células e Tecidos
2.
BMC Infect Dis ; 22(1): 404, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35468749

RESUMO

BACKGROUND: The Centers for Disease Control and Prevention contracted with laboratories to sequence the SARS-CoV-2 genome from positive samples across the United States to enable public health officials to investigate the impact of variants on disease severity as well as the effectiveness of vaccines and treatment. Herein we present the initial results correlating RT-PCR quality control metrics with sample collection and sequencing methods from full SARS-CoV-2 viral genomic sequencing of 24,441 positive patient samples between April and June 2021. METHODS: RT-PCR confirmed (N Gene Ct value < 30) positive patient samples, with nucleic acid extracted from saliva, nasopharyngeal and oropharyngeal swabs were selected for viral whole genome SARS-CoV-2 sequencing. Sequencing was performed using Illumina COVIDSeq™ protocol on either the NextSeq550 or NovaSeq6000 systems. Informatic variant calling, and lineage analysis were performed using DRAGEN COVID Lineage applications on Illumina's Basespace cloud analytical system. All sequence data and variant calls were uploaded to NCBI and GISAID. RESULTS: An association was observed between higher sequencing coverage, quality, and samples with a lower Ct value, with < 27 being optimal, across both sequencing platforms and sample collection methods. Both nasopharyngeal swabs and saliva samples were found to be optimal samples of choice for SARS-CoV-2 surveillance sequencing studies, both in terms of strain identification and sequencing depth of coverage, with NovaSeq 6000 providing higher coverage than the NextSeq 550. The most frequent variants identified were the B.1.617.2 Delta (India) and P.1 Gamma (Brazil) variants in the samples sequenced between April 2021 and June 2021. At the time of submission, the most common variant > 99% of positives sequenced was Omicron. CONCLUSION: These initial analyses highlight the importance of sequencing platform, sample collection methods, and RT-PCR Ct values in guiding surveillance efforts. These surveillance studies evaluating genetic changes of SARS-CoV-2 have been identified as critical by the CDC that can affect many aspects of public health including transmission, disease severity, diagnostics, therapeutics, and vaccines.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/epidemiologia , COVID-19/prevenção & controle , Centers for Disease Control and Prevention, U.S. , Genômica , Humanos , SARS-CoV-2/genética , Estados Unidos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...