Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 57(10): 2413-20, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16766600

RESUMO

Root proliferation as a response to exploit zones of nutrient enrichment in soil has been demonstrated for a wide range of plant species. However, the effectiveness of this as a strategy to acquire nutrients is also dependent on interactions with the soil microbial community. Specifically, C-flow from roots modifies microbial activity and probably the balance between nutrient mineralization and immobilization processes in the rhizosphere. In this study, near-natural abundance 13C-labelling and gene-reporter methods were applied to determine the effects of uneven nitrate supply to roots of Hordeum vulgare on assimilate partitioning and root exudation. Plants were initially grown in uniform nitrate supply in split-root, sand microcosms after which one treatment continued to receive uniform supply, and the other received nitrate to one root compartment only. At the time of imposing the treatments, the CO2 supplied to the plants was switched to a cylinder source, providing a distinct delta13C-signature and allowing the fate of new assimilate within the plants to be determined. The labelling approach allowed quantification of the expected preferential allocation of new C-assimilate to roots in enriched nitrate, prior to any measurable effect on whole biomass or root architecture. Biosensor (lux-marked Pseudomonas fluorescens 10586 pUCD607) bioluminescence, quantified spatially by CCD imaging, demonstrated that root exudation was significantly increased for roots in enriched nitrate. This response of root exudation, being primarily associated with root apices and concurrent with enhanced assimilate supply, strongly suggests that C-flow from roots is an integral component of the proliferation response to nitrate.


Assuntos
Hordeum/fisiologia , Nitratos/fisiologia , Raízes de Plantas/fisiologia , Técnicas Biossensoriais , Isótopos de Carbono/metabolismo , Hordeum/metabolismo , Hordeum/microbiologia , Luciferases Bacterianas , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia
2.
New Phytol ; 168(2): 455-64, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16219084

RESUMO

Plant disease susceptibility is often increased by nitrogen (N) application. Therefore, it is important to know if resistance loci are effective in different plant N environments. One-hundred lines of the Bala x Azucena rice (Oryza sativa) mapping population were grown in two N treatments and tested for partial resistance to blast (Magnaporthe grisea) isolate CD100. Disease severity (DS), the number and size of lesions and plant N and C concentrations were measured and the results subject to quantitative trait loci (QTL) and QTL x environment analysis. There was a 66% higher plant N concentration in the high N treatment and DS increased significantly, mostly as a result of increased numbers of lesions. Nine regions contained QTL for disease traits but only one showed evidence of statistically significant QTL x treatment interaction. This was a large effect quantitative trait locus at marker R1933 on chromosome 12 which was less effective at high N. Apparently, blast disease is increased by higher plant N, but the efficacy of partial resistance genes is not greatly affected by N application.


Assuntos
Magnaporthe/patogenicidade , Oryza/genética , Oryza/microbiologia , Mapeamento Cromossômico , Genes de Plantas , Nitrogênio/metabolismo , Oryza/metabolismo , Fenótipo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Locos de Características Quantitativas
3.
J Exp Bot ; 54(381): 325-34, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12493860

RESUMO

The aim of this study was to determine the relationship between shoot nitrate concentration, mediated by nitrate supply to roots, and root exudation from Hordeum vulgare. Plants were grown for 14 d in C-free sand microcosms, supplied with nutrient solution containing 2 mM nitrate. After this period, three treatments were applied for a further 14 d: (A) continued supply with 2 mM nitrate (zero boost), (B) supply with 10 mM nitrate (low boost), and (C) supply with 20 mM nitrate (high boost). At the end of the treatment period, a bacterial biosensor (Pseudomonas fluorescens 10586 pUCD607, marked with the lux CDABE genes for bioluminescence) was applied to the microcosms to report on C-substrate availability, as a consequence of root exudation. The nitrate boost treatments significantly affected shoot nitrate concentrations, in the order C>B>A. In treatments receiving a nitrate boost (B, C), increased shoot nitrate concentration was correlated with increased plant biomass, reduced root length, reduced number of root tips, and increased mean root diameter, relative to the no boost treatment (A). Imaging of biosensor bioluminescence (proportional to metabolic activity in response to availability of root exudates) indicated that root exudation increased with decreasing shoot nitrate concentration. Biosensor reporting of root C-flow indicated that exudation was greater from root tip regions than from the whole root, but that specific exudation rates for all sites were unaffected by treatments. Total root exudation across treatments was found to be closely correlated with total root length, indicating that increased root exudation, per unit root biomass, with decreasing nitrate supply was associated with altered root morphology, as a consequence of systemic plant responses to internal N-status.


Assuntos
Hordeum/metabolismo , Nitratos/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Biomassa , Técnicas Biossensoriais , Carbono/metabolismo , Glucose/metabolismo , Luz , Folhas de Planta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...