Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 10(8)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34439501

RESUMO

To evaluate the role of iron in sodium iodate (NaIO3)-induced model of age-related macular degeneration (AMD) in ARPE-19 cells in-vitro and in mouse models in-vivo. ARPE-19 cells, a human retinal pigment epithelial cell line, was exposed to 10 mM NaIO3 for 24 h, and the expression and localization of major iron modulating proteins was evaluated by Western blotting (WB) and immunostaining. Synthesis and maturation of cathepsin-D (cat-D), a lysosomal enzyme, was evaluated by quantitative reverse-transcriptase polymerase chain reaction (RT-qPCR) and WB, respectively. For in-vivo studies, C57BL/6 mice were injected with 40 mg/kg mouse body weight of NaIO3 intraperitoneally, and their retina was evaluated after 3 weeks as above. NaIO3 induced a 10-fold increase in ferritin in ARPE-19 cells, which co-localized with LC3II, an autophagosomal marker, and LAMP-1, a lysosomal marker. A similar increase in ferritin was noted in retinal lysates and retinal sections of NaIO3-injected mice by WB and immunostaining. Impaired synthesis and maturation of cat-D was also noted. Accumulated ferritin was loaded with iron, and released from retinal pigmented epithelial (RPE) cells in Perls' and LAMP-1 positive vesicles. NaIO3 impairs lysosomal degradation of ferritin by decreasing the transcription and maturation of cat-D in RPE cells. Iron-loaded ferritin accumulates in lysosomes and is released in lysosomal membrane-enclosed vesicles to the extracellular milieu. Accumulation of ferritin in RPE cells and fusion of ferritin-containing vesicles with adjacent photoreceptor cells is likely to create an iron overload, compromising their viability. Moreover, reduced activity of cat-D is likely to promote accumulation of other cellular debris in lysosomal vesicles, contributing to AMD-like pathology.

2.
Prion ; 15(1): 126-137, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34224321

RESUMO

Accumulation of redox-active iron in human sporadic Creutzfeldt-Jakob disease (sCJD) brain tissue and scrapie-infected mouse brains has been demonstrated previously. Here, we explored whether upregulation of local hepcidin secreted within the brain is the underlying cause of iron accumulation and associated toxicity. Using scrapie-infected mouse brains, we demonstrate transcriptional upregulation of hepcidin relative to controls. As a result, ferroportin (Fpn), the downstream effector of hepcidin and the only known iron export protein was downregulated, and ferritin, an iron storage protein was upregulated, suggesting increased intracellular iron. A similar transcriptional and translational upregulation of hepcidin, and decreased expression of Fpn and an increase in ferritin expression was observed in sCJD brain tissue. Further evaluation in human neuroblastoma cells (M17) exposed to synthetic mini-hepcidin showed downregulation of Fpn, upregulation of ferritin, and an increase in reactive oxygen species (ROS), resulting in cytotoxicity in a dose-dependent manner. Similar effects were noted in primary neurons isolated from mouse brain. As in M17 cells, primary neurons accumulated ferritin and ROS, and showed toxicity at five times lower concentration of mini-hepcidin. These observations suggest that upregulation of brain hepcidin plays a significant role in iron accumulation and associated neurotoxicity in human and animal prion disorders.


Assuntos
Hepcidinas , Doenças Priônicas , Animais , Encéfalo/metabolismo , Ferritinas/metabolismo , Hepcidinas/genética , Hepcidinas/metabolismo , Camundongos , Doenças Priônicas/genética , Regulação para Cima
3.
J Alzheimers Dis ; 82(4): 1487-1497, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34180415

RESUMO

BACKGROUND: Accumulation of iron is a consistent feature of Alzheimer's disease (AD) brains. The underlying cause, however, remains debatable. OBJECTIVE: To explore whether local hepcidin synthesized by brain cells contributes to iron accumulation in AD brains. METHODS: Brain tissue from the cingulate cortex of 33 cases of AD pre-assigned to Braak stage I-VI, 6 cases of non-dementia, and 15 cases of non-AD dementia were analyzed for transcriptional upregulation of hepcidin by RT-qPCR and RT-PCR. Change in the expression of ferritin, ferroportin (Fpn), microglial activation marker Iba1, IL-6, and TGFß2 was determined by western blotting. Total tissue iron was determined by colorimetry. RESULTS: Significant transcriptional upregulation of hepcidin was observed in Braak stage III-VI relative to Braak stage I and II, non-AD dementia, and non-dementia samples. Ferritin was increased in Braak stage V, and a significant increase in tissue iron was evident in Braak stage III-VI. The expression of Iba1 and IL-6 was also increased in Braak stage III-VI relative to Braak stage I and II and non-AD dementia samples. Amyloid-ß plaques were absent in most Braak stage I and II samples, and present in Braak stage III-VI samples with few exceptions. CONCLUSION: These observations suggest that upregulation of brain hepcidin is mediated by IL-6, a known transcriptional activator of hepcidin. The consequent downregulation of Fpn on neuronal and other cells results in accumulation of iron in AD brains. The increase in hepcidin is disease-specific, and increases with disease progression, implicating AD-specific pathology in the accumulation of iron.


Assuntos
Doença de Alzheimer/patologia , Anti-Infecciosos/metabolismo , Ferritinas/metabolismo , Hepcidinas/metabolismo , Regulação para Cima , Idoso , Autopsia , Encéfalo/patologia , Feminino , Humanos , Interleucina-6/metabolismo , Masculino , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
Int J Mol Sci ; 21(19)2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33023198

RESUMO

Age-related macular degeneration (AMD) and glaucoma are degenerative conditions of the retina and a significant cause of irreversible blindness in developed countries. Alzheimer's disease (AD), the most common dementia of the elderly, is often associated with AMD and glaucoma. The cardinal features of AD include extracellular accumulation of amyloid ß (Aß) and intracellular deposits of hyper-phosphorylated tau (p-tau). Neuroinflammation and brain iron dyshomeostasis accompany Aß and p-tau deposits and, together, lead to progressive neuronal death and dementia. The accumulation of Aß and iron in drusen, the hallmark of AMD, and Aß and p-tau in retinal ganglion cells (RGC), the main retinal cell type implicated in glaucoma, and accompanying inflammation suggest overlapping pathology. Visual abnormalities are prominent in AD and are believed to develop before cognitive decline. Some are caused by degeneration of the visual cortex, while others are due to RGC loss or AMD-associated retinal degeneration. Here, we review recent information on Aß, p-tau, chronic inflammation, and iron dyshomeostasis as common pathogenic mechanisms linking the three degenerative conditions, and iron chelation as a common therapeutic option for these disorders. Additionally discussed is the role of prion protein, infamous for prion disorders, in Aß-mediated toxicity and, paradoxically, in neuroprotection.


Assuntos
Doença de Alzheimer/genética , Encéfalo/metabolismo , Degeneração Macular/genética , Agregação Patológica de Proteínas/genética , Doença de Alzheimer/complicações , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Encéfalo/patologia , Glaucoma/complicações , Glaucoma/genética , Glaucoma/patologia , Humanos , Degeneração Macular/complicações , Degeneração Macular/patologia , Agregação Patológica de Proteínas/patologia , Retina/metabolismo , Retina/patologia , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Proteínas tau/genética , Proteínas tau/metabolismo
5.
Invest Ophthalmol Vis Sci ; 61(3): 24, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32182331

RESUMO

Purpose: Elevated levels of transforming-growth-factor (TGF)-ß2 in the trabecular meshwork (TM) and aqueous humor are associated with primary open-angle glaucoma (POAG). The underlying mechanism includes alteration of extracellular matrix homeostasis through Smad-dependent and independent signaling. Smad4, an essential co-Smad, upregulates hepcidin, the master regulator of iron homeostasis. Here, we explored whether TGF-ß2 upregulates hepcidin, implicating iron in the pathogenesis of POAG. Methods: Primary human TM cells and human and bovine ex vivo anterior segment organ cultures were exposed to bioactive TGF-ß2, hepcidin, heparin (a hepcidin antagonist), or N-acetyl carnosine (an antioxidant), and the change in the expression of hepcidin, ferroportin, ferritin, and TGF-ß2 was evaluated by semiquantitative RT-PCR, Western blotting, and immunohistochemistry. Increase in reactive oxygen species (ROS) was quantified with dihydroethidium, an ROS-sensitive dye. Results: Primary human TM cells and bovine TM tissue synthesize hepcidin locally, which is upregulated by bioactive TGF-ß2. Hepcidin downregulates ferroportin, its downstream target, increasing ferritin and iron-catalyzed ROS. This causes reciprocal upregulation of TGF-ß2 at the transcriptional and translational levels. Heparin downregulates hepcidin, and reduces TGF-ß2-mediated increase in ferritin and ROS. Notably, both heparin and N-acetyl carnosine reduce TGF-ß2-mediated reciprocal upregulation of TGF-ß2. Conclusions: The above observations suggest that TGF-ß2 and hepcidin form a self-sustained feed-forward loop through iron-catalyzed ROS. This loop is partially disrupted by a hepcidin antagonist and an anti-oxidant, implicating iron and ROS in TGF-ß2-mediated POAG. We propose that modification of currently available hepcidin antagonists for ocular use may prove beneficial for the therapeutic management of TGF-ß2-associated POAG.


Assuntos
Glaucoma de Ângulo Aberto/metabolismo , Hepcidinas/metabolismo , Ferro/metabolismo , Malha Trabecular/efeitos dos fármacos , Fator de Crescimento Transformador beta2/farmacologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Western Blotting , Carnosina/análogos & derivados , Carnosina/farmacologia , Proteínas de Transporte de Cátions/metabolismo , Bovinos , Células Cultivadas , Eletroforese em Gel de Poliacrilamida , Feminino , Ferritinas/metabolismo , Glaucoma de Ângulo Aberto/patologia , Heparina/farmacologia , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Técnicas de Cultura de Órgãos , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Doadores de Tecidos , Malha Trabecular/metabolismo , Malha Trabecular/patologia , Fator de Crescimento Transformador beta2/metabolismo , Regulação para Cima
6.
Exp Eye Res ; 190: 107890, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31811823

RESUMO

PURPOSE: The avascular cornea, trabecular meshwork (TM), and lens obtain iron, an essential biometal, from the aqueous humor (AH). The mechanism by which this exchange is regulated, however, is unclear. Recently we reported that non-pigmented ciliary epithelial cells express ferroportin (Fpn) (Ashok, 2018b), an iron export protein modulated by hepcidin, the master regulator of iron homeostasis secreted mainly by the liver. Here, we explored whether ciliary epithelial and other cells in the anterior segment synthesize hepcidin, suggesting local regulation of iron exchange at this site. METHODS: Human and bovine eyes were dissected to isolate the ciliary body (CB), corneal endothelial (CE), TM, lens epithelial (LE), and outer epithelial cell layer of the iris. Total mRNA and protein lysates were processed to evaluate the synthesis and expression of hepcidin, the iron regulatory peptide hormone, Fpn, the only known iron export protein, ceruloplasmin (Cp), a ferroxidase necessary for iron export, transferrin receptor (TfR), a major iron uptake protein, and ferritin, a major iron storage protein. A combination of techniques including reverse transcription polymerase chain reaction (RT-PCR) of total mRNA, Western blotting of protein lysates, and immunofluorescence of fixed tissue sections were used to accomplish these goals. RESULTS: RT-PCR of isolated tissue samples revealed hepcidin-specific mRNA in the CB, TM, CE, and LE of the bovine eye. Western blotting of protein lysates from these tissues showed reactivity for hepcidin, Fpn, ferritin, and TfR. Western blotting and immunohistochemistry of similar tissues isolated from cadaveric human eyes showed expression of hepcidin, Fpn, and Cp in these samples. Notably, Fpn and Cp were expressed on the basolateral membrane of non-pigmented ciliary epithelial cells, facing the AH. CONCLUSIONS: Synthesis and expression of hepcidin and Fpn in the ciliary epithelium suggests local regulation of iron transport from choroidal plexus in the ciliary body to the AH across the blood-aqueous barrier. Expression of hepcidin and Fpn in CE, TM, and LE cells indicates additional regulation of iron exchange between the AH and cornea, TM, and lens, suggesting autonomous regulation of iron homeostasis in the anterior segment. Physiological and pathological implications of these observations are discussed.


Assuntos
Segmento Anterior do Olho/metabolismo , Anti-Infecciosos/metabolismo , Hepcidinas/biossíntese , Adulto , Idoso , Animais , Western Blotting , Proteínas de Transporte de Cátions/metabolismo , Bovinos , Ceruloplasmina/metabolismo , Corpo Ciliar/metabolismo , Eletroforese em Gel de Poliacrilamida , Endotélio Corneano/metabolismo , Células Epiteliais/metabolismo , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Hepcidinas/genética , Humanos , Iris/metabolismo , Cristalino/metabolismo , Masculino , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Malha Trabecular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...