Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 3862, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737291

RESUMO

Allostery in proteins influences various biological processes such as regulation of gene transcription and activities of enzymes and cell signaling. Computational approaches for analysis of allosteric coupling provide inexpensive opportunities to predict mutations and to design small-molecule agents to control protein function and cellular activity. We develop a computationally efficient network-based method, Ohm, to identify and characterize allosteric communication networks within proteins. Unlike previously developed simulation-based approaches, Ohm relies solely on the structure of the protein of interest. We use Ohm to map allosteric networks in a dataset composed of 20 proteins experimentally identified to be allosterically regulated. Further, the Ohm allostery prediction for the protein CheY correlates well with NMR CHESCA studies. Our webserver, Ohm.dokhlab.org, automatically determines allosteric network architecture and identifies critical coupled residues within this network.


Assuntos
Algoritmos , Proteínas Quimiotáticas Aceptoras de Metil/química , Mapeamento de Interação de Proteínas/estatística & dados numéricos , Software , Regulação Alostérica , Sítio Alostérico , Animais , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli , Humanos , Internet , Proteínas Quimiotáticas Aceptoras de Metil/antagonistas & inibidores , Proteínas Quimiotáticas Aceptoras de Metil/metabolismo , Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína
2.
Structure ; 22(12): 1735-1743, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25458836

RESUMO

Conformational fluctuations play a central role in enzymatic catalysis. However, it is not clear how the rates and the coordination of the motions affect the different catalytic steps. Here, we used NMR spectroscopy to analyze the conformational fluctuations of the catalytic subunit of the cAMP-dependent protein kinase (PKA-C), a ubiquitous enzyme involved in a myriad of cell signaling events. We found that the wild-type enzyme undergoes synchronous motions involving several structural elements located in the small lobe of the kinase, which is responsible for nucleotide binding and release. In contrast, a mutation (Y204A) located far from the active site desynchronizes the opening and closing of the active cleft without changing the enzyme's structure, rendering it catalytically inefficient. Since the opening and closing motions govern the rate-determining product release, we conclude that optimal and coherent conformational fluctuations are necessary for efficient turnover of protein kinases.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , Catálise , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Ligação Proteica , Conformação Proteica
3.
J Mol Biol ; 425(13): 2372-81, 2013 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-23648838

RESUMO

It is now widely recognized that dynamics are important to consider for understanding allosteric protein function. However, dynamics occur over a wide range of timescales, and how these different motions relate to one another is not well understood. Here, we report an NMR relaxation study of dynamics over multiple timescales at both backbone and side-chain sites upon an allosteric response to phosphorylation. The response regulator, Escherichia coli CheY, allosterically responds to phosphorylation with a change in dynamics on both the microsecond-to-millisecond (µs-ms) timescale and the picosecond-to-nanosecond (ps-ns) timescale. We observe an apparent decrease and redistribution of µs-ms dynamics upon phosphorylation (and accompanying Mg(2+) saturation) of CheY. Additionally, methyl groups with the largest changes in ps-ns dynamics localize to the regions of conformational change measured by µs-ms dynamics. The limited spread of changes in ps-ns dynamics suggests a distinct relationship between motions on the µs-ms and ps-ns timescales in CheY. The allosteric mechanism utilized by CheY highlights the diversity of roles dynamics play in protein function.


Assuntos
Regulação Alostérica , Proteínas de Bactérias/química , Proteínas de Membrana/química , Proteínas de Bactérias/metabolismo , Escherichia coli/fisiologia , Proteínas de Escherichia coli , Cinética , Espectroscopia de Ressonância Magnética , Proteínas de Membrana/metabolismo , Proteínas Quimiotáticas Aceptoras de Metil , Fosforilação , Conformação Proteica , Processamento de Proteína Pós-Traducional , Transdução de Sinais
4.
Structure ; 20(8): 1363-73, 2012 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-22727815

RESUMO

The switch between an inactive and active conformation is an important transition for signaling proteins, yet the mechanisms underlying such switches are not clearly understood. Escherichia coli CheY, a response regulator protein from the two-component signal transduction system that regulates bacterial chemotaxis, is an ideal protein for the study of allosteric mechanisms. By using 15N CPMG relaxation dispersion experiments, we monitored the inherent dynamic switching of unphosphorylated CheY. We show that CheY does not undergo a two-state concerted switch between the inactive and active conformations. Interestingly, partial saturation of Mg2+ enhances the intrinsic allosteric motions. Taken together with chemical shift perturbations, these data indicate that the µs-ms timescale motions underlying CheY allostery are segmental in nature. We propose an expanded allosteric network of residues, including W58, that undergo asynchronous, local switching between inactive and active-like conformations as the primary basis for the allosteric mechanism.


Assuntos
Proteínas de Bactérias/química , Escherichia coli , Proteínas de Membrana/química , Modelos Moleculares , Algoritmos , Regulação Alostérica , Sítio Alostérico , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Domínio Catalítico , Proteínas de Escherichia coli , Ligação de Hidrogênio , Magnésio/química , Proteínas de Membrana/genética , Proteínas Quimiotáticas Aceptoras de Metil , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...