Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 556: 276-90, 2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26974575

RESUMO

Identifying critical source areas (CSAs) of diffuse pollution in agricultural catchments requires the accurate identification of hydrologically sensitive areas (HSAs) at highest propensity for generating surface runoff and transporting pollutants. A new GIS-based HSA Index is presented that improves the identification of HSAs at the sub-field scale by accounting for microtopographic controls. The Index is based on high resolution LiDAR data and a soil topographic index (STI) and also considers the hydrological disconnection of overland flow via topographic impediment from flow sinks. The HSA Index was applied to four intensive agricultural catchments (~7.5-12km(2)) with contrasting topography and soil types, and validated using rainfall-quickflow measurements during saturated winter storm events in 2009-2014. Total flow sink volume capacities ranged from 8298 to 59,584m(3) and caused 8.5-24.2% of overland-flow-generating-areas and 16.8-33.4% of catchment areas to become hydrologically disconnected from the open drainage channel network. HSA maps identified 'breakthrough points' and 'delivery points' along surface runoff pathways as vulnerable points where diffuse pollutants could be transported between fields or delivered to the open drainage network, respectively. Using these as proposed locations for targeting mitigation measures such as riparian buffer strips reduced potential costs compared to blanket implementation within an example agri-environment scheme by 66% and 91% over 1 and 5years respectively, which included LiDAR DEM acquisition costs. The HSA Index can be used as a hydrologically realistic transport component within a fully evolved sub-field scale CSA model, and can also be used to guide the implementation of 'treatment-train' mitigation strategies concurrent with sustainable agricultural intensification.

2.
Sci Total Environ ; 541: 292-302, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26410704

RESUMO

Two groundwater dominated catchments with contrasting land use (Grassland and Arable) and soil chemistry were investigated for influences on P transfer below the rooting zone, via the aquifer and into the rivers. The objective was to improve the understanding of hydrochemical process for best management practise and determine the importance of P transfer via groundwater pathways. Despite the catchments having similar inorganic P reserves, the iron-rich soils of the Grassland catchment favoured P mobilisation into soluble form and transfer to groundwater. Sites in that catchment had elevated dissolved reactive P concentrations in groundwater (>0.035 mg l(-1)) and the river had flow-weighted mean TRP concentrations almost three times that of the aluminium-rich Arable catchment (0.067 mg l(-1) compared to 0.023 mg l(-1)). While the average annual TRP flux was low in both catchments (although three times higher in the Grassland catchment; 0.385 kg ha(-1) compared to 0.128 kg ha(-1)), 50% and 59% of TRP was lost via groundwater, respectively, during winter periods that were closed for fertiliser application. For policy reviews, slow-flow pathways and associated time-lags between fertiliser application, mobilisation of soil P reserves and delivery to the river should be carefully considered when reviewing mitigating strategies and efficacy of mitigating measures in groundwater fed catchments. For example, while the Grassland catchment indicated a soil-P chemistry susceptibility, the Arable catchment indicated a transient point source control; both resulted in sustained or transient periods of elevated low river-flow P concentrations, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...