Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Cell Rep ; 42(4): 112399, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37060561

RESUMO

Hepatic cholesterol overload promotes steatohepatitis. Insufficient understanding of liver stress defense impedes therapy development. Here, we elucidate the role of stress defense transcription factors, nuclear factor erythroid 2 related factor-1 (NRF1) and -2 (NRF2), in counteracting cholesterol-linked liver stress. Using a diet that increases liver cholesterol storage, expression profiles and phenotypes of liver from mice with hepatocyte deficiency of NRF1, NRF2, or both are compared with controls, and chromatin immunoprecipitation sequencing is undertaken to identify target genes. Results show NRF1 and NRF2 co-regulate genes that eliminate cholesterol and mitigate inflammation and oxidative damage. Combined deficiency, but not deficiency of either alone, results in severe steatohepatitis, hepatic cholesterol overload and crystallization, altered bile acid metabolism, and decreased biliary cholesterol. Moreover, therapeutic effects of NRF2-activating drug bardoxolone require NRF1 and are supplemented by NRF1 overexpression. Thus, we discover complementary gene programming by NRF1 and NRF2 that counteract cholesterol-associated fatty liver disease progression.


Assuntos
Fator 2 Relacionado a NF-E2 , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Colesterol/metabolismo , Regulação da Expressão Gênica , Fígado/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Estresse Oxidativo
3.
Nat Methods ; 20(3): 432-441, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36823330

RESUMO

Optogenetic tools for controlling protein-protein interactions (PPIs) have been developed from a small number of photosensory modules that respond to a limited selection of wavelengths. Cyanobacteriochrome (CBCR) GAF domain variants respond to an unmatched array of colors; however, their natural molecular mechanisms of action cannot easily be exploited for optogenetic control of PPIs. Here we developed bidirectional, cyanobacteriochrome-based light-inducible dimers (BICYCL)s by engineering synthetic light-dependent interactors for a red/green GAF domain. The systematic approach enables the future engineering of the broad chromatic palette of CBCRs for optogenetics use. BICYCLs are among the smallest optogenetic tools for controlling PPIs and enable either green-ON/red-OFF (BICYCL-Red) or red-ON/green-OFF (BICYCL-Green) control with up to 800-fold state selectivity. The access to green wavelengths creates new opportunities for multiplexing with existing tools. We demonstrate the utility of BICYCLs for controlling protein subcellular localization and transcriptional processes in mammalian cells and for multiplexing with existing blue-light tools.


Assuntos
Cianobactérias , Animais , Cianobactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Luz , Optogenética , Mamíferos/metabolismo
4.
Methods Mol Biol ; 2381: 307-331, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34590284

RESUMO

Functional genomic screens can identify several proteins as potential targets for drug development in cancer. Typically, these drug targets are validated with pharmacological inhibition using small molecules. Given that chemical inhibitors do not exist for a many of these proteins, several promising candidates often remain unexplored. In this chapter, we describe methods for generating protein-based inhibitors of intracellular targets using phage display. This is a scalable and inexpensive approach that can be applied to several protein targets identified in genetic screens. We describe methods for expression of target proteins, construction of phage-display libraries and selection of binding proteins. These synthetic binding proteins can block natural protein interactions within the cancer cell and act as inhibitors. Protein inhibitors have utility in validation of drug targets and can also guide small-molecule drug development.


Assuntos
Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proteínas de Transporte , Genômica , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Biblioteca de Peptídeos , Preparações Farmacêuticas , Proteínas/metabolismo
5.
J Mol Biol ; 432(10): 3113-3126, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32198111

RESUMO

Although widely used in the detection and characterization of protein-protein interactions, Y2H screening has been under-used for the engineering of new optogenetic tools or the improvement of existing tools. Here we explore the feasibility of using Y2H selection and screening to evaluate libraries of photoswitchable protein-protein interactions. We targeted the interaction between circularly permuted photoactive yellow protein (cPYP) and its binding partner binder of PYP dark-state (BoPD) by mutating a set of four surface residues of cPYP that contribute to the binding interface. A library of ~10,000 variants was expressed in yeast together with BoPD in a Y2H format. An initial selection for the cPYP/BoPD interaction was performed using a range of concentrations of the cPYP chromophore. As expected, the majority (>90% of cPYP variants) no longer bound to BoPD. Replica plating was then used to evaluate the photoswitchability of the surviving clones. Photoswitchable cPYP variants with BoPD affinities equal to, or higher than, native cPYP were recovered in addition to variants with altered photocycles and binders that interacted with BoPD as apo-proteins. Y2H results reflected protein-protein interaction affinity, expression, photoswitchability, and chromophore uptake, and correlated well with results obtained both in vitro and in mammalian cells. Thus, by systematic variation of selection parameters, Y2H screens can be effectively used to generate new optogenetic tools for controlling protein-protein interactions for use in diverse settings.


Assuntos
Proteínas de Bactérias/metabolismo , Fotorreceptores Microbianos/metabolismo , Mapeamento de Interação de Proteínas/métodos , Proteínas/metabolismo , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Estudos de Viabilidade , Biblioteca Gênica , Humanos , Modelos Moleculares , Optogenética , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/genética , Ligação Proteica , Proteínas/genética , Técnicas do Sistema de Duplo-Híbrido
6.
ChemPhotoChem ; 3(6): 431-440, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32856001

RESUMO

Photo-controlled affinity reagents seek to provide modular spatiotemporal control of bioactivity by conferring photo-switchability of function on an affinity reagent scaffold. Here we used Rosetta-based computational methods to screen for sites on the Fynomer affinity reagent structure for attachment of photoswitchable cross-linkers. Both established UV-based cross-linkers (azobenzene-iodoacetamide (IAC)) and an azonium-based efficient red light switchable cross-linker, piperazino-tetra-ortho-methoxy azobenzene (PIP), were then tested experimentally. Several sites compatible with Fynomer function were identified, including sites showing rapid (<10s) red light (633 nm) modulation of function. While a range of overall target binding affinities were observed, the degree of photo-switchability of Fynomer function was generally small (<2-fold). Computational models suggest that local flexibility limits the degree of switching seen in these designs.

7.
ACS Synth Biol ; 7(10): 2355-2364, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30203962

RESUMO

Nature provides an array of proteins that change conformation in response to light. The discovery of a complementary array of proteins that bind only the light-state or dark-state conformation of their photoactive partner proteins would allow each light-switchable protein to be used as an optogenetic tool to control protein-protein interactions. However, as many photoactive proteins have no known binding partner, the advantages of optogenetic control-precise spatial and temporal resolution-are currently restricted to a few well-defined natural systems. In addition, the affinities and kinetics of native interactions are often suboptimal and are difficult to engineer in the absence of any structural information. We report a phage display strategy using a small scaffold protein that can be used to discover new binding partners for both light and dark states of a given light-switchable protein. We used our approach to generate binding partners that interact specifically with the light state or the dark state conformation of two light-switchable proteins: PYP, a test case for a protein with no known partners, and AsLOV2, a well-characterized protein. We show that these novel light-switchable protein-protein interactions can function in living cells to control subcellular localization processes.


Assuntos
Proteínas de Bactérias/metabolismo , Técnicas de Visualização da Superfície Celular/métodos , Luz , Fotorreceptores Microbianos/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/metabolismo , Humanos , Proteínas Imobilizadas/química , Proteínas Imobilizadas/metabolismo , Espectroscopia de Ressonância Magnética , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/genética , Conformação Proteica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...