Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurourol Urodyn ; 38(6): 1551-1559, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31102563

RESUMO

AIM: To characterize the effects of acute spinal cord injury (SCI) on mitochondrial morphology and function in bladder urothelium and to test the therapeutic efficacy of early treatment with the mitochondrially targeted antioxidant, MitoTempo. METHODS: We used a mouse model of acute SCI by spinal cord transection between the T8-T9 vertebrae with or without MitoTempo delivery at the time of injury followed by tissue processing at 3 days after SCI. Control, SCI, and SCI-MitoTempo-treated mice were compared in all experimental conditions. Assessments included analysis of markers of mitochondrial health including accumulation of reactive oxygen species (ROS), morphological changes in the ultrastructure of mitochondria by transmission electron microscopy, and Western blot analysis to quantify protein levels of markers for autophagy and altered mitochondrial dynamics. RESULTS: SCI resulted in an increase in oxidative stress markers and ROS production, confirming mitochondrial dysfunction. Mitochondria from SCI mice developed large electron-dense inclusions and these aberrant mitochondria accumulated throughout the cytoplasm suggesting an inability to clear dysfunctional mitochondria by mitophagy. SCI mice also exhibited elevated levels of dynamin-related protein 1 (DRP1), consistent with a disruption of mitochondrial dynamics. Remarkably, treatment with MitoTempo reversed many of the SCI-induced abnormalities that we observed. CONCLUSIONS: Acute SCI negatively and severely affects mitochondrial health of bladder urothelium. Early treatment of SCI with MitoTempo may be a viable therapeutic agent to mitigate these deleterious effects.


Assuntos
Doenças Mitocondriais/etiologia , Doenças Mitocondriais/metabolismo , Traumatismos da Medula Espinal/metabolismo , Urotélio/metabolismo , Doença Aguda , Animais , Antioxidantes/farmacologia , Apoptose , Autofagia , Dinaminas/biossíntese , Dinaminas/genética , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Compostos Organofosforados/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Piperidinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo
2.
Neurourol Urodyn ; 38(2): 572-581, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30575113

RESUMO

AIM: Chronic stress exacerbates the symptoms of most pain disorders including interstitial cystitis/bladder pain syndrome (IC/BPS). Abnormalities in urothelial cells (UTC) occur in this debilitating bladder condition. The sequence of events that might link stress (presumably through increased sympathetic nervous system-SNS activity) to urothelial dysfunction are unknown. Since autonomic dysregulation, mitochondrial dysfunction, and oxidative stress all occur in chronic pain, we investigated whether chronic psychological stress initiated a cascade linking these three dysfunctions. METHODS: Adult female Wistar Kyoto rats were exposed to 10 days of water avoidance stress (WAS). Bladders were then harvested for Western blot and single cell imaging in UTC cultures. RESULTS: UTC from WAS rats exhibited depolarized mitochondria membrane potential (Ψm ∼30% more depolarized compared to control), activated AMPK and altered UT mitochondria bioenergetics. Expression of the fusion protein mitofusion-2 (MFN-2) was upregulated in the mucosa, suggesting mitochondrial structural changes consistent with altered cellular metabolism. Intracellular calcium levels were elevated in cultured WAS UTC, consistent with impaired cellular function. Stimulation of cultured UTC with alpha-adrenergic (α-AR) receptor agonists increased reactive oxidative species (ROS) production, suggesting a direct action of SNS activity on UTC. Treatment of rats with guanethidine to block SNS activity prevented most of WAS-induced changes. CONCLUSIONS: Chronic stress results in persistent sympathetically mediated effects that alter UTC mitochondrial function. This may impact the urothelial barrier and signaling, which contributes to bladder dysfunction and pain. This is the first demonstration, to our knowledge, of a potential autonomic mechanism directly linking stress to mitochondrial dysfunction.


Assuntos
Sistema Nervoso Autônomo/fisiopatologia , Cistite Intersticial/fisiopatologia , Mitocôndrias/metabolismo , Estresse Oxidativo/fisiologia , Urotélio/fisiopatologia , Animais , Sistema Nervoso Autônomo/metabolismo , Cistite Intersticial/metabolismo , Modelos Animais de Doenças , Feminino , Ratos , Ratos Endogâmicos WKY , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Urotélio/metabolismo
4.
Naunyn Schmiedebergs Arch Pharmacol ; 391(11): 1191-1202, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30054681

RESUMO

Transient receptor potential cation channel subfamily M member 4 (TRPM4) has been shown to play a key role in detrusor contractility under physiological conditions. In this study, we investigated the potential role of TRPM4 in detrusor overactivity following spinal cord transection (SCT) in mice. TRPM4 expression and function were evaluated in bladder tissue with or without the mucosa from spinal intact (SI) and SCT female mice (T8-T9 vertebra; 1-28 days post SCT) using PCR, western blot, immunohistochemistry, and muscle strip contractility techniques. TRPM4 was expressed in the urothelium (UT) and detrusor smooth muscle (DSM) and was upregulated after SCT. Expression levels peaked 3-7 days post SCT in both the UT and DSM. Pharmacological block of TRPM4 with the antagonist, 9-Phenanthrol (30 µM) greatly reduced spontaneous phasic activity that developed after SCT, regardless of the presence or absence of the mucosa. Detrusor overactivity following spinal cord injury leads to incontinence and/or renal impairment and represents a major health problem for which current treatments are not satisfactory. Augmented TRPM4 expression in the bladder after chronic SCT supports the hypothesis that TRPM4 channels play a role in DSM overactivity following SCT. Inhibition of TRPM4 may be beneficial for improving detrusor overactivity in SCI.


Assuntos
Músculo Liso/fisiologia , Traumatismos da Medula Espinal , Canais de Cátion TRPM/fisiologia , Bexiga Urinária Hiperativa/fisiopatologia , Bexiga Urinária/fisiologia , Animais , Feminino , Camundongos Endogâmicos C57BL , Contração Muscular/fisiologia , Urotélio/fisiologia
5.
Front Syst Neurosci ; 12: 13, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29706873

RESUMO

Interstitial cystitis/bladder pain syndrome (IC/BPS) is a debilitating chronic disease of unknown etiology. A naturally occurring disease termed feline interstitial cystitis (FIC) reproduces many features of IC/BPS patients. To gain insights into mechanisms underlying IC/BPS, we investigated pathological changes in the lamina propria (LP) of the bladder and proximal urethra in cats with FIC, using histological and molecular methods. Compared to control cat tissue, we found an increased number of de-granulated mast cells, accumulation of leukocytes, increased cyclooxygenase (COX)-1 expression in the bladder LP, and increased COX-2 expression in the urethra LP from cats with FIC. We also found increased suburothelial proliferation, evidenced by mucosal von Brunn's nests, neovascularization and alterations in elastin content. Scanning electron microscopy revealed normal appearance of the superficial urethral epithelium, including the neuroendocrine cells (termed paraneurons), in FIC urethrae. Together, these histological findings suggest the presence of chronic inflammation of unknown origin leading to tissue remodeling. Since the mucosa functions as part of a "sensory network" and urothelial cells, nerves and other cells in the LP are influenced by the composition of the underlying tissues including the vasculature, the changes observed in the present study may alter the communication of sensory information between different cellular components. This type of mucosal signaling can also extend to the urethra, where recent evidence has revealed that the urethral epithelium is likely to be part of a signaling system involving paraneurons and sensory nerves. Taken together, our data suggest a more prominent role for chronic inflammation and tissue remodeling than previously thought, which may result in alterations in mucosal signaling within the urinary bladder and proximal urethra that may contribute to altered sensations and pain in cats and humans with this syndrome.

6.
PLoS One ; 13(3): e0193923, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29513744

RESUMO

Radiation-induced bladder toxicity is associated with radiation therapy for pelvic malignancies, arising from unavoidable irradiation of neighbouring normal bladder tissue. This study aimed to investigate the acute impact of ionizing radiation on the contractility of bladder strips and identify the radiation-sensitivity of the mucosa vs the detrusor. Guinea-pig bladder strips (intact or mucosa-free) received ex vivo sham or 20Gy irradiation and were studied with in vitro myography, electrical field stimulation and Ca2+-fluorescence imaging. Frequency-dependent, neurogenic contractions in intact strips were reduced by irradiation across the force-frequency graph. The radiation-difference persisted in atropine (1µM); subsequent addition of PPADs (100µM) blocked the radiation effect at higher stimulation frequencies and decreased the force-frequency plot. Conversely, neurogenic contractions in mucosa-free strips were radiation-insensitive. Radiation did not affect agonist-evoked contractions (1µM carbachol, 5mM ATP) in intact or mucosa-free strips. Interestingly, agonist-evoked contractions were larger in irradiated mucosa-free strips vs irradiated intact strips suggesting that radiation may have unmasked an inhibitory mucosal element. Spontaneous activity was larger in control intact vs mucosa-free preparations; this difference was absent in irradiated strips. Spontaneous Ca2+-transients in smooth muscle cells within tissue preparations were reduced by radiation. Radiation affected neurogenic and agonist-evoked bladder contractions and also reduced Ca2+-signalling events in smooth muscle cells when the mucosal layer was present. Radiation eliminated a positive modulatory effect on spontaneous activity by the mucosa layer. Overall, the findings suggest that radiation impairs contractility via mucosal regulatory mechanisms independent of the development of radiation cystitis.


Assuntos
Músculo Liso/efeitos da radiação , Bexiga Urinária/efeitos da radiação , Trifosfato de Adenosina/farmacologia , Animais , Atropina/farmacologia , Sinalização do Cálcio , Carbacol/farmacologia , Relação Dose-Resposta à Radiação , Cobaias , Técnicas In Vitro , Masculino , Mucosa/efeitos dos fármacos , Mucosa/fisiologia , Contração Muscular/efeitos dos fármacos , Contração Muscular/efeitos da radiação , Músculo Liso/efeitos dos fármacos , Músculo Liso/fisiologia , Doses de Radiação , Bexiga Urinária/efeitos dos fármacos
7.
F1000Res ; 6: 2148, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29333252

RESUMO

Lower urinary tract symptoms-in particular, storage disorders (for example, urinary incontinence) as well as bladder underactivity-are major health-related problems that increase with age. Yet lower urinary tract symptoms remain under-diagnosed and poorly managed, and incontinence has been cited as the major reason for institutionalization in elderly populations and is one of the most common conditions in primary care practice. Although lifestyle and behavior therapy has been used as a useful treatment regimen for urge incontinence, medications (often used as adjunct) can provide additional benefit. This review will include current therapies used for treatment of urinary incontinence.

8.
Neurourol Urodyn ; 36(4): 1052-1060, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27494539

RESUMO

AIMS: To investigate the local, regulatory role of the mucosa on bladder strip contractility from normal and overactive bladders and to examine the effect of botulinum toxin A (BoNT-A). METHODS: Bladder strips from spontaneously hyperactive rat (SHR) or normal rats (Sprague Dawley, SD) were dissected for myography as intact or mucosa-free preparations. Spontaneous, neurogenic and agonist-evoked contractions were investigated. SHR strips were incubated in BoNT-A (3 h) to assess effects on contractility. RESULTS: Spontaneous contraction amplitude, force-integral or frequency were not significantly different in SHR mucosa-free strips compared with intacts. In contrast, spontaneous contraction amplitude and force-integral were smaller in SD mucosa-free strips than in intacts; frequency was not affected by the mucosa. Frequency of spontaneous contractions in SHR strips was significantly greater than in SD strips. Neurogenic contractions in mucosa-free SHR and SD strips at higher frequencies were smaller than in intact strips. The mucosa did not affect carbachol-evoked contractions in intact versus mucosa-free strips from SHR or SD bladders. BoNT-A reduced spontaneous contractions in SHR intact strips; this trend was also observed in mucosa-free strips but was not significant. Neurogenic and carbachol-evoked contractions were reduced by BoNT-A in mucosa-free but not intact strips. Depolarisation-induced contractions were smaller in BoNT-A-treated mucosa-free strips. CONCLUSIONS: The mucosal layer positively modulates spontaneous contractions in strips from normal SD but not overactive SHR bladder strips. The novel finding of BoNT-A reduction of contractions in SHR mucosa-free strips indicates actions on the detrusor, independent of its classical action on neuronal SNARE complexes.


Assuntos
Toxinas Botulínicas Tipo A/farmacologia , Contração Muscular/efeitos dos fármacos , Fármacos Neuromusculares/farmacologia , Bexiga Urinária Hiperativa/tratamento farmacológico , Bexiga Urinária/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Masculino , Músculo Liso/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
9.
Arch Biochem Biophys ; 478(2): 136-42, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18708025

RESUMO

Increasing evidence from both clinical and experimental studies indicates that the insulin-releasing hormone, glucagon-like peptide-1 (GLP-1) may exert additional protective/reparative effects on the cardiovascular system. The aim of this study was to examine vasorelaxant effects of GLP-1(7-36)amide, three structurally-related peptides and a non-peptide GLP-1 agonist in rat aorta. Interestingly, all GLP-1 compounds, including the established GLP-1 receptor antagonist, exendin (9-39) caused concentration-dependent relaxation. Mechanistic studies employing hyperpolarising concentrations of potassium or glybenclamide revealed that these relaxant effects are mediated via specific activation of ATP-sensitive potassium channels. Further experiments using a specific membrane-permeable cyclic AMP (cAMP) antagonist, and demonstration of increased cAMP production in response to GLP-1 illustrated the critical importance of this pathway. These data significantly extend previous observations suggesting that GLP-1 may modulate vascular function, and indicate that this effect may be mediated by the GLP-1 receptor. However, further studies are required in order to establish whether GLP-1 related agents may confer additional cardiovascular benefits to diabetic patients.


Assuntos
Aorta Torácica/efeitos dos fármacos , Aorta Torácica/fisiologia , AMP Cíclico/fisiologia , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Canais KATP/fisiologia , Animais , Primers do DNA/genética , Expressão Gênica , Peptídeo 1 Semelhante ao Glucagon/agonistas , Peptídeo 1 Semelhante ao Glucagon/análogos & derivados , Peptídeo 1 Semelhante ao Glucagon/fisiologia , Receptor do Peptídeo Semelhante ao Glucagon 1 , Técnicas In Vitro , Masculino , Fragmentos de Peptídeos/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Glucagon/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia
10.
Am J Physiol Gastrointest Liver Physiol ; 294(4): G1041-51, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18308858

RESUMO

The neurotransmitter(s) underlying nitric oxide synthase (NOS)-independent neural inhibition in the internal anal sphincter (IAS) is still uncertain. The present study investigated the role of purinergic transmission. Contractile and electrical responses to electrical field stimulation of nerves (0.1-5 Hz for 10-60 s) were recorded in strips of mouse IAS. A single stimulus generated a 28-mV fast inhibitory junction potential (IJP) and relaxation. The NOS inhibitor N(omega)-nitro-l-arginine (l-NNA) reduced the fast IJP duration by 20%. Repetitive stimulation at 2.5-5 Hz caused a more sustained IJP and sustained relaxation. l-NNA reduced relaxation at 1 Hz and the sustained IJP at 2.5-5 Hz. All other experiments were carried out in the presence of NOS blockade. IJPs and relaxation were significantly reduced by the P2 receptor antagonists 4-[[4-formyl-5-hydroxy-6-methyl-3-[(phosphonooxy)methyl]-2-pyridinyl]azo]-1,3-benzenedisulfonic acid (PPADS) (100 microM), by desensitization of P2Y receptors with adenosine 5'-[beta-thio]diphosphate (ADP-betaS) (10 microM), and by the selective P2Y1 receptor blocker 2'-deoxy-N(6)-methyl adenosine 3',5'-diphosphate (MRS2179) (10 microM). Relaxation and IJPs were also significantly reduced by the K(+) channel blocker apamin (1 microM). Removal of extracellular potassium (K(o)) increased IJP amplitude to 205% of control, whereas return of K(o) 30 min later hyperpolarized cells by 19 mV and reduced IJP amplitude to 50% of control. Exogenous ATP (3 mM) relaxed muscles in the presence of TTX (1 microM) and hyperpolarized cells by 15 mV. In conclusion, these data suggest that purinergic transmission significantly contributes to NOS-independent neural inhibition in the mouse IAS. P2Y1 receptors, as well as at least one other P2 receptor subtype, contribute to this pathway. Purinergic receptors activate apamin-sensitive K(+) channels as well as other apamin-insensitive conductances leading to hyperpolarization and relaxation.


Assuntos
Canal Anal/inervação , Sistema Nervoso Entérico/metabolismo , Músculo Liso/inervação , Inibição Neural , Junção Neuromuscular/metabolismo , Purinas/metabolismo , Receptores Purinérgicos P2/metabolismo , Transmissão Sináptica , Difosfato de Adenosina/análogos & derivados , Difosfato de Adenosina/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Apamina/farmacologia , Estimulação Elétrica , Sistema Nervoso Entérico/efeitos dos fármacos , Sistema Nervoso Entérico/enzimologia , Inibidores Enzimáticos/farmacologia , Técnicas In Vitro , Potenciais Pós-Sinápticos Inibidores , Camundongos , Camundongos Endogâmicos BALB C , Neurônios Motores/metabolismo , Contração Muscular , Relaxamento Muscular , Inibição Neural/efeitos dos fármacos , Junção Neuromuscular/efeitos dos fármacos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/metabolismo , Nitroarginina/farmacologia , Potássio/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/efeitos dos fármacos , Canais de Potássio/metabolismo , Antagonistas do Receptor Purinérgico P2 , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/farmacologia , Receptores Purinérgicos P2Y1 , Transmissão Sináptica/efeitos dos fármacos , Tetrodotoxina/farmacologia , Tionucleotídeos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...