Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Hum Behav ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951612

RESUMO

In societies without writing, ethnographically known rituals have rarely been tracked back archaeologically more than a few hundred years. At the invitation of GunaiKurnai Aboriginal Elders, we undertook archaeological excavations at Cloggs Cave in the foothills of the Australian Alps. In GunaiKurnai Country, caves were not used as residential places during the early colonial period (mid-nineteenth century CE), but as secluded retreats for the performance of rituals by Aboriginal medicine men and women known as 'mulla-mullung', as documented by ethnographers. Here we report the discovery of buried 11,000- and 12,000-year-old miniature fireplaces with protruding trimmed wooden artefacts made of Casuarina wood smeared with animal or human fat, matching the configuration and contents of GunaiKurnai ritual installations described in nineteenth-century ethnography. These findings represent 500 generations of cultural transmission of an ethnographically documented ritual practice that dates back to the end of the last ice age and that contains Australia's oldest known wooden artefacts.

2.
ACS Energy Lett ; 9(6): 2554-2563, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38903403

RESUMO

Lithium alloy anodes in the form of dense foils offer significant potential advantages over lithium metal and particulate alloy anodes for solid-state batteries (SSBs). However, the reaction and degradation mechanisms of dense alloy anodes remain largely unexplored. Here, we investigate the electrochemical lithiation/delithiation behavior of 12 elemental alloy anodes in SSBs with Li6PS5Cl solid-state electrolyte (SSE), enabling direct behavioral comparisons. The materials show highly divergent first-cycle Coulombic efficiency, ranging from 99.3% for indium to ∼20% for antimony. Through microstructural imaging and electrochemical testing, we identify lithium trapping within the foil during delithiation as the principal reason for low Coulombic efficiency in most materials. The exceptional Coulombic efficiency of indium is found to be due to unique delithiation reaction front morphology evolution in which the high-diffusivity LiIn phase remains at the SSE interface. This study links composition to reaction behavior for alloy anodes and thus provides guidance toward better SSBs.

3.
ACS Nano ; 18(21): 13866-13875, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38751199

RESUMO

Control over material structure and morphology during electrodeposition is necessary for material synthesis and energy applications. One approach to guide crystallite formation is to take advantage of epitaxy on a current collector to facilitate crystallographic control. Single-layer graphene on metal foils can promote "remote epitaxy" during Cu and Zn electrodeposition, resulting in growth of metal that is crystallographically aligned to the substrate beneath graphene. However, the substrate-graphene-deposit interactions that allow for epitaxial electrodeposition are not well understood. Here, we investigate how different graphene layer thicknesses (monolayer, bilayer, trilayer, and graphite) influence the electrodeposition of Zn and Cu. Scanning transmission electron microscopy and electron backscatter diffraction are leveraged to understand metal morphology and structure, demonstrating that remote epitaxy occurs on mono- and bilayer graphene but not trilayer or thicker. Density functional theory (DFT) simulations reveal the spatial electronic interactions through thin graphene that promote remote epitaxy. This work advances our understanding of electrochemical remote epitaxy and provides strategies for improving control over electrodeposition.

4.
Nat Commun ; 14(1): 3975, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463893

RESUMO

Metal negative electrodes that alloy with lithium have high theoretical charge storage capacity and are ideal candidates for developing high-energy rechargeable batteries. However, such electrode materials show limited reversibility in Li-ion batteries with standard non-aqueous liquid electrolyte solutions. To circumvent this issue, here we report the use of non-pre-lithiated aluminum-foil-based negative electrodes with engineered microstructures in an all-solid-state Li-ion cell configuration. When a 30-µm-thick Al94.5In5.5 negative electrode is combined with a Li6PS5Cl solid-state electrolyte and a LiNi0.6Mn0.2Co0.2O2-based positive electrode, lab-scale cells deliver hundreds of stable cycles with practically relevant areal capacities at high current densities (6.5 mA cm-2). We also demonstrate that the multiphase Al-In microstructure enables improved rate behavior and enhanced reversibility due to the distributed LiIn network within the aluminum matrix. These results demonstrate the possibility of improved all-solid-state batteries via metallurgical design of negative electrodes while simplifying manufacturing processes.

5.
J Am Chem Soc ; 145(4): 2473-2484, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36689617

RESUMO

Electrolytes, consisting of salts, solvents, and additives, must form a stable solid electrolyte interphase (SEI) to ensure the performance and durability of lithium(Li)-ion batteries. However, the electric double layer (EDL) structure near charged surfaces is still unsolved, despite its importance in dictating the species being reduced for SEI formation near a negative electrode. In this work, a newly developed model was used to illustrate the effect of EDL on SEI formation in two essential electrolytes, the carbonate-based electrolyte for Li-ion batteries and the ether-based electrolyte for batteries with Li-metal anodes. Both electrolytes have fluoroethylene carbonate (FEC) as a common additive to form the beneficial F-containing SEI component (e.g., LiF). However, the role of FEC drastically differs in these electrolytes. FEC is an effective SEI modifier for the carbonate-based electrolyte by being the only F-containing species entering the EDL and being reduced, as the anion (PF6-) will not enter the EDL. For the ether-based electrolyte, both the anion (TFSI-) and FEC can enter the EDL and be reduced. The competition of the two species within the EDL due to the surface charge and temperature leads to a unique temperature effect observed in prior experiments: the FEC additive is more effective in modulating SEI components at a low temperature (-40 °C) than at room temperature (20 °C) in the ether-based electrolyte. These collective quantitative agreements with experiments emphasize the importance of incorporating the effect of the EDL in multicomponent electrolyte reduction reactions in simulations/experiments to predict/control the formation of the SEI layer.

6.
Nat Commun ; 13(1): 4934, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35995795

RESUMO

Nonaqueous sodium-based batteries are ideal candidates for the next generation of electrochemical energy storage devices. However, despite the promising performance at ambient temperature, their low-temperature (e.g., < 0 °C) operation is detrimentally affected by the increase in the electrolyte resistance and solid electrolyte interphase (SEI) instability. Here, to circumvent these issues, we propose specific electrolyte formulations comprising linear and cyclic ether-based solvents and sodium trifluoromethanesulfonate salt that are thermally stable down to -150 °C and enable the formation of a stable SEI at low temperatures. When tested in the Na||Na coin cell configuration, the low-temperature electrolytes enable long-term cycling down to -80 °C. Via ex situ physicochemical (e.g., X-ray photoelectron spectroscopy, cryogenic transmission electron microscopy and atomic force microscopy) electrode measurements and density functional theory calculations, we investigate the mechanisms responsible for efficient low-temperature electrochemical performance. We also report the assembly and testing between -20 °C and -60 °C of full Na||Na3V2(PO4)3 coin cells. The cell tested at -40 °C shows an initial discharge capacity of 68 mAh g-1 with a capacity retention of approximately 94% after 100 cycles at 22 mA g-1.

7.
Artigo em Inglês | MEDLINE | ID: mdl-35834402

RESUMO

Iron trifluoride (FeF3), a conversion-type cathode for sodium-ion batteries (SIBs), is based on cheap and abundant Fe and provides high theoretical capacity. However, the applications of FeF3-based SIBs have been hindered by their low-capacity utilization and poor cycling stability. Herein, we report greatly enhanced performance of FeF3 in multiple types of ionic liquid (IL) electrolytes at both room temperature (RT) and elevated temperatures. The Pyr1,4FSI electrolyte demonstrated the best cycling stability with an unprecedented decay rate of only ∼0.023% per cycle after the initial stabilization and an average coulombic efficiency of ∼99.5% for over 1000 cycles at RT. The Pyr1,3FSI electrolyte demonstrated the best cycling stability with a capacity decay rate of only ∼0.25% per cycle at 60 °C. Cells using Pyr1,3FSI and EMIMFSI electrolytes also showed promising cycling stability with capacity decay rates of ∼0.039% and ∼0.030% per cycle over 1000 cycles, respectively. A protective and ionically conductive cathode electrolyte interphase (CEI) layer is formed during cycling in ILs, diminishing side reactions that commonly lead to gassing and excessive CEI growth in organic electrolytes, especially at elevated temperatures. Furthermore, the increased ionic conductivity and decreased viscosity of ILs at elevated temperatures help attain higher accessible capacity. The application of ILs sheds light on designing a protective CEI for its use in stable SIBs.

8.
Nano Lett ; 22(2): 554-560, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-34989235

RESUMO

We demonstrate the vapor-liquid-solid growth of single-crystalline i-Si, i-Si/n-Si, and SixGe1-x/SiyGe1-y nanowires via the Geode process. By enabling nanowire growth on the large internal surface area of a microcapsule powder, the Geode process improves the scalability of semiconductor nanowire manufacturing while maintaining nanoscale programmability. Here, we show that heat and mass transport limitations introduced by the microcapsule wall are negligible, enabling the same degree of compositional control for nanowires grown inside microcapsules and on conventional flat substrates. Efficient heat and mass transport also minimize the structural variations of nanowires grown in microcapsules with different diameters and wall thicknesses. Nanowires containing at least 16 segments and segment lengths below 75 nm are demonstrated.

9.
ACS Appl Mater Interfaces ; 14(3): 4051-4060, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35029376

RESUMO

Solid-state batteries (SSBs) with lithium metal anodes offer higher specific energy than conventional lithium-ion batteries, but they must utilize areal capacities >3 mAh cm-2 and cycle at current densities >3 mA cm-2 to achieve commercial viability. Substantial research effort has focused on increasing the rate capabilities of SSBs by mitigating detrimental processes such as lithium filament penetration and short circuiting. Less attention has been paid to understanding how areal capacity impacts lithium plating/stripping behavior in SSBs, despite the importance of areal capacity for achieving high specific energy. Here, we investigate and quantify the relationships among areal capacity, current density, and plating/stripping stability using both symmetric and full-cell configurations with a sulfide solid-state electrolyte (Li6PS5Cl). We show that unstable deposition and short circuiting readily occur at rates much lower than the measured critical current density when a sufficient areal capacity is passed. A systematic study of continuous plating under different electrochemical conditions reveals average "threshold capacity" values at different current densities, beyond which short circuiting occurs. Cycling cells below this threshold capacity significantly enhances cell lifetime, enabling stable symmetric cell cycling at 2.2 mA cm-2 without short circuiting. Finally, we show that full cells with LiNi0.8Mn0.1Co0.1O2 also exhibit threshold capacity behavior, but they tend to short circuit at lower current densities and areal capacities. Our results quantify the effects of transferred capacity and demonstrate the importance of using realistic areal capacities in experiments to develop viable solid-state batteries.

10.
Nano Lett ; 21(19): 8197-8204, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34570490

RESUMO

It is critical to understand the transformation mechanisms in layered metal chalcogenides to enable controlled synthesis and processing. Here, we develop an alumina encapsulation layer-based in situ transmission electron microscopy (TEM) setup that enables the investigation of melting, crystallization, and alloying of nanoscale bismuth telluride platelets while limiting sublimation in the high-vacuum TEM environment. Heating alumina-encapsulated platelets to 700 °C in situ resulted in melting that initiated at edge planes and proceeded via the movement of a sharp interface. The encapsulated melt was then cooled to induce solidification, with individual nuclei growing to form single crystals with the same basal plane orientation as the original platelet and nonequilibrium crystal shapes imposed by the encapsulation layer. Finally, heating platelets in the presence of antimony caused alloying and lattice strain, along with heterogeneous phase formation. These findings provide new insight into important transformation processes in layered metal chalcogenide materials.

11.
Nano Lett ; 21(15): 6353-6355, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34292758
13.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33941645

RESUMO

The arrival of modern humans into previously unoccupied island ecosystems is closely linked to widespread extinction, and a key reason cited for Pleistocene megafauna extinction is anthropogenic overhunting. A common assumption based on late Holocene records is that humans always negatively impact insular biotas, which requires an extrapolation of recent human behavior and technology into the archaeological past. Hominins have been on islands since at least the early Pleistocene and Homo sapiens for at least 50 thousand y (ka). Over such lengthy intervals it is scarcely surprising that significant evolutionary, behavioral, and cultural changes occurred. However, the deep-time link between human arrival and island extinctions has never been explored globally. Here, we examine archaeological and paleontological records of all Pleistocene islands with a documented hominin presence to examine whether humans have always been destructive agents. We show that extinctions at a global level cannot be associated with Pleistocene hominin arrival based on current data and are difficult to disentangle from records of environmental change. It is not until the Holocene that large-scale changes in technology, dispersal, demography, and human behavior visibly affect island ecosystems. The extinction acceleration we are currently experiencing is thus not inherent but rather part of a more recent cultural complex.


Assuntos
Extinção Biológica , Fósseis/história , Hominidae/psicologia , Tecnologia/história , Animais , Arqueologia/métodos , Evolução Biológica , Ecossistema , História Antiga , Hominidae/fisiologia , Humanos , Paleontologia/métodos
14.
Nat Mater ; 20(4): 503-510, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33510445

RESUMO

Despite progress in solid-state battery engineering, our understanding of the chemo-mechanical phenomena that govern electrochemical behaviour and stability at solid-solid interfaces remains limited compared to at solid-liquid interfaces. Here, we use operando synchrotron X-ray computed microtomography to investigate the evolution of lithium/solid-state electrolyte interfaces during battery cycling, revealing how the complex interplay among void formation, interphase growth and volumetric changes determines cell behaviour. Void formation during lithium stripping is directly visualized in symmetric cells, and the loss of contact that drives current constriction at the interface between lithium and the solid-state electrolyte (Li10SnP2S12) is quantified and found to be the primary cause of cell failure. The interphase is found to be redox-active upon charge, and global volume changes occur owing to partial molar volume mismatches at either electrode. These results provide insight into how chemo-mechanical phenomena can affect cell performance, thus facilitating the development of solid-state batteries.

15.
Sci Rep ; 10(1): 22151, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33335222

RESUMO

Insects form an important source of food for many people around the world, but little is known of the deep-time history of insect harvesting from the archaeological record. In Australia, early settler writings from the 1830s to mid-1800s reported congregations of Aboriginal groups from multiple clans and language groups taking advantage of the annual migration of Bogong moths (Agrotis infusa) in and near the Australian Alps, the continent's highest mountain range. The moths were targeted as a food item for their large numbers and high fat contents. Within 30 years of initial colonial contact, however, the Bogong moth festivals had ceased until their recent revival. No reliable archaeological evidence of Bogong moth exploitation or processing has ever been discovered, signalling a major gap in the archaeological history of Aboriginal groups. Here we report on microscopic remains of ground and cooked Bogong moths on a recently excavated grindstone from Cloggs Cave, in the southern foothills of the Australian Alps. These findings represent the first conclusive archaeological evidence of insect foods in Australia, and, as far as we know, of their remains on stone artefacts in the world. They provide insights into the antiquity of important Aboriginal dietary practices that have until now remained archaeologically invisible.

16.
Science ; 369(6507)2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32855310

RESUMO

Strategies for 21st-century environmental management and conservation under global change require a strong understanding of the biological mechanisms that mediate responses to climate- and human-driven change to successfully mitigate range contractions, extinctions, and the degradation of ecosystem services. Biodiversity responses to past rapid warming events can be followed in situ and over extended periods, using cross-disciplinary approaches that provide cost-effective and scalable information for species' conservation and the maintenance of resilient ecosystems in many bioregions. Beyond the intrinsic knowledge gain such integrative research will increasingly provide the context, tools, and relevant case studies to assist in mitigating climate-driven biodiversity losses in the 21st century and beyond.


Assuntos
Biodiversidade , Mudança Climática/história , Conservação dos Recursos Naturais , Extinção Biológica , Animais , Arquivos , História Antiga , Paleontologia
17.
Nat Nanotechnol ; 15(6): 475-481, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32483321

RESUMO

High-capacity alloy anode materials for Li-ion batteries have long been held back by limited cyclability caused by the large volume changes during lithium insertion and removal. Hollow and yolk-shell nanostructures have been used to increase the cycling stability by providing an inner void space to accommodate volume changes and a mechanically and dimensionally stable outer surface. These materials, however, require complex synthesis procedures. Here, using in situ transmission electron microscopy, we show that sufficiently small antimony nanocrystals spontaneously form uniform voids on the removal of lithium, which are then reversibly filled and vacated during cycling. This behaviour is found to arise from a resilient native oxide layer that allows for an initial expansion during lithiation but mechanically prevents shrinkage as antimony forms voids during delithiation. We developed a chemomechanical model that explains these observations, and we demonstrate that this behaviour is size dependent. Thus, antimony naturally evolves to form optimal nanostructures for alloy anodes, as we show through electrochemical experiments in a half-cell configuration in which 15-nm antimony nanocrystals have a consistently higher Coulombic efficiency than larger nanoparticles.

18.
Sci Data ; 6(1): 272, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31745083

RESUMO

The 2016 version of the FosSahul database compiled non-human vertebrate megafauna fossil ages from Sahul published up to 2013 in a standardized format. Its purpose was to create a publicly available, centralized, and comprehensive database for palaeoecological investigations of the continent. Such databases require regular updates and improvements to reflect recent scientific findings. Here we present an updated FosSahul (2.0) containing 11,871 dated non-human vertebrate fossil records from the Late Quaternary published up to 2018. Furthermore, we have extended the information captured in the database to include methodological details and have developed an algorithm to automate the quality-rating process. The algorithm makes the quality-rating more transparent and easier to reproduce, facilitating future database extensions and dissemination. FosSahul has already enabled several palaeoecological analyses, and its updated version will continue to provide a centralized organisation of Sahul's fossil records. As an example of an application of the database, we present the temporal pattern in megafauna genus richness inferred from available data in relation to palaeoclimate indices over the past 180,000 years.


Assuntos
Bases de Dados Factuais , Fósseis , Vertebrados , Animais , Austrália
19.
Nat Commun ; 10(1): 5311, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31757942

RESUMO

The mechanisms leading to megafauna (>44 kg) extinctions in Late Pleistocene (126,000-12,000 years ago) Australia are highly contested because standard chronological analyses rely on scarce data of varying quality and ignore spatial complexity. Relevant archaeological and palaeontological records are most often also biased by differential preservation resulting in under-representated older events. Chronological analyses have attributed megafaunal extinctions to climate change, humans, or a combination of the two, but rarely consider spatial variation in extinction patterns, initial human appearance trajectories, and palaeoclimate change together. Here we develop a statistical approach to infer spatio-temporal trajectories of megafauna extirpations (local extinctions) and initial human appearance in south-eastern Australia. We identify a combined climate-human effect on regional extirpation patterns suggesting that small, mobile Aboriginal populations potentially needed access to drinkable water to survive arid ecosystems, but were simultaneously constrained by climate-dependent net landscape primary productivity. Thus, the co-drivers of megafauna extirpations were themselves constrained by the spatial distribution of climate-dependent water sources.


Assuntos
Biodiversidade , Mudança Climática , Água Potável , Ecossistema , Extinção Biológica , Migração Humana , Havaiano Nativo ou Outro Ilhéu do Pacífico , Animais , Arqueologia , Austrália , Humanos , Paleontologia , Análise Espacial
20.
Nano Lett ; 19(12): 8664-8672, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31671260

RESUMO

While Li-ion batteries are known to fail at temperatures below -20 °C, very little is known regarding the low-temperature behavior of next-generation high-capacity electrode materials. The lithium metal anode is of particular interest for high-energy battery chemistries, but improved understanding of and control over its electrochemical and nanoscale interfacial behavior in diverse conditions is necessary. Here, we investigate lithium deposition/stripping, morphology evolution, and solid-electrolyte interphase (SEI) structure and properties down to -80 °C using an ether-based electrolyte (DOL/DME). As temperature is reduced, we find that the morphology of deposited lithium is significantly altered. Furthermore, cryogenic transmission electron microscopy coupled with vacuum-transfer X-ray photoelectron spectroscopy reveal that the SEI exhibits different structure, chemistry, thickness, and conductive properties at lower temperatures. These results show that Li is promising for batteries operating under extreme conditions, and the distinct nanoscale evolution of Li electrodes at different temperatures must be considered when designing high-energy batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...