Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 34(37): 10828-10836, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30145906

RESUMO

Molecular monolayers that can be reconfigured through the use of external stimuli promise to enable the creation of interfaces with precisely selected dynamically adjustable physical and electronic properties with potential impact ranging from electronics to energy storage. Azobenzene-containing molecular monolayers have multiple stable molecular conformations but face a challenging nanoscale problem associated with understanding the basic mechanisms of reconfiguration. Time-resolved X-ray reflectivity studies show that the reconfiguration of a densely packed rhenium-azobenzene monolayer occurs in a period of many seconds. The degree of reconfiguration from trans to cis forms depends on the integrated UV fluence and has kinetics that are consistent with a mechanism in which the transformation occurs through the nucleation and growth of nanoscale two-dimensional regions of the cis isomer.

2.
Langmuir ; 33(9): 2157-2168, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28170273

RESUMO

The structural configuration of molecules assembled at organic-inorganic interfaces within electronic materials strongly influences the functional electronic and vibrational properties relevant to applications ranging from energy storage to photovoltaics. Controlling and characterizing the structural state of an interface and its evolution under external stimuli is crucial both for the fundamental understanding of the factors influenced by molecular structure and for the development of methods for material synthesis. It has been challenging to create complete molecular monolayers that exhibit external reversible control of the structure and electronic configuration. We report a monolayer/inorganic interface consisting of an organic monolayer assembled on an oxide surface, exhibiting structural and electronic reconfiguration under ultraviolet illumination. The molecular monolayer is linked to the surface through a carboxylate link, with the backbone bearing an azobenzene functional group and the head group consisting of a rhenium-bipyridine group. Optical spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy, and X-ray reflectivity show that closely packed monolayers are formed from these molecules via the Langmuir-Blodgett technique. Reversible photoisomerization is observed in solution and in monolayers assembled on Si and quartz substrates. The reconfiguration of these monolayers provides additional means to control excitation and charge transfer processes that are important in applications in catalysis, molecular electronics, and solar energy conversion.

3.
Mater Sci Eng C Mater Biol Appl ; 65: 369-78, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27157764

RESUMO

Recently, liquid crystalline elastomers (LCEs) have been proposed as active substrates for cell culture due to their potential to attach and orient cells, and impose dynamic mechanical signals through the application of external stimuli. In this report, the preparation of anisotropic and oriented nematic magnetic-sensitized LCEs with iron oxide nanoparticles, and the evaluation of the effect of particle addition at low concentrations on the resultant structural, thermal, thermo-mechanical, and mechanical properties is presented. Phase transformations produced by heating in alternating magnetic fields were investigated in LCEs in contact with air, water, and a common liquid cell culture medium was also evaluated. The inclusion of nanoparticles into the elastomers displaced the nematic-to-isotropic phase transition, without affecting the nematic structure as evidenced by similar values of the order parameter, while reducing the maximum thermomechanical deformations. Remote and reversible deformations of the magnetic LCEs were achieved through the application of alternating magnetic fields, which induces the nematic-isotropic phase transition through nanoparticle heat generation. Formulation parameters can be modified to allow for remote actuation at values closer to the human physiological temperature range and within the range of deformations that can affect the cellular behavior of fibroblasts. Finally, a collagen surface treatment was performed to improve compatibility with NIH-3T3 fibroblast cultures, which enabled the attachment and proliferation of fibroblasts on substrates with and without magnetic particles under quiescent conditions. The LCEs developed in this work, which are able to deform and experience stress changes by remote contact-less magnetic stimulation, may allow for further studies on the effect of substrate morphology changes and dynamic mechanical properties during in vitro cell culture.


Assuntos
Elastômeros/química , Cristais Líquidos/química , Nanocompostos/química , Animais , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Compostos Férricos/química , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/toxicidade , Camundongos , Microscopia Confocal , Células NIH 3T3 , Nanocompostos/toxicidade , Temperatura
4.
Nat Commun ; 6: 8006, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26258594

RESUMO

Graphene can be transformed from a semimetal into a semiconductor if it is confined into nanoribbons narrower than 10 nm with controlled crystallographic orientation and well-defined armchair edges. However, the scalable synthesis of nanoribbons with this precision directly on insulating or semiconducting substrates has not been possible. Here we demonstrate the synthesis of graphene nanoribbons on Ge(001) via chemical vapour deposition. The nanoribbons are self-aligning 3° from the Ge〈110〉 directions, are self-defining with predominantly smooth armchair edges, and have tunable width to <10 nm and aspect ratio to >70. In order to realize highly anisotropic ribbons, it is critical to operate in a regime in which the growth rate in the width direction is especially slow, <5 nm h(-1). This directional and anisotropic growth enables nanoribbon fabrication directly on conventional semiconductor wafer platforms and, therefore, promises to allow the integration of nanoribbons into future hybrid integrated circuits.

5.
Langmuir ; 30(21): 6104-13, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24797789

RESUMO

We demonstrate the Langmuir-Blodgett assembly of two rhenium-bipyridine complexes containing a flexible or an aromatic bridge, and transfer of the monolayer to SiO2 and single crystal TiO2 substrates. Both of the complexes (ReEC and Re2TC) have a hydrophilic carboxylic acid group, which preferentially anchors into the water subphase, and forms stable monolayers at surface pressures up to 40 mN/m. The optimum conditions for the formation of complete monolayers of both ReEC and Re2TC were identified through characterization of the morphology by atomic force microscopy (AFM), the thickness by ellipsometry, and the surface coverage by X-ray photoelectron spectroscopy (XPS). X-ray reflectivity measurements (XRR) are consistent with the orientation of the molecules normal to the substrate, and their extension to close to their calculated maximum length. Parameters derived from XRR analysis show that there is a higher packing density for Re2TC monolayers than for ReEC monolayers, attributable to the more rigid bridge in the Re2TC molecule.

6.
Phys Rev Lett ; 110(20): 205503, 2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-25167426

RESUMO

Large-wave-vector phonons have an important role in determining the thermal and electronic properties of nanoscale materials. The small volumes of such structures, however, have posed significant challenges to experimental studies of the phonon dispersion. We show that synchrotron x-ray thermal diffuse scattering can be adapted to probe phonons with wave vectors spanning the entire Brillouin zone of nanoscale silicon membranes. The thermal diffuse scattering signal from flat Si nanomembranes with thicknesses from 315 to 6 nm, and a sample volume as small as 5 µm(3), has the expected linear dependence on the membrane thickness and also exhibits excess intensity at large wave vectors, consistent with the scattering signature expected from low-lying large-wave-vector modes of the membranes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...