Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38946581

RESUMO

Current tissue engineering (TE) methods utilize chondrocytes primarily from costal or articular sources. Despite the robust mechanical properties of neocartilages sourced from these cells, the lack of elasticity and invasiveness of cell collection from these sources negatively impact clinical translation. These limitations invited the exploration of naturally elastic auricular cartilage as an alternative cell source. This study aimed to determine if auricular chondrocytes (AuCs) can be used for TE scaffold-free neocartilage constructs and assess their biomechanical properties. Neocartilages were successfully generated from a small quantity of primary neonatal AuCs of three minipig donors (n = 3). Neocartilage constructs had instantaneous moduli of 200.5 kPa ± 43.34 and 471.9 ± 92.8 kPa at 10% and 20% strain, respectively. TE constructs' relaxation moduli (Er) were 36.99 ± 6.47 kPa Er and 110.3 ± 16.99 kPa at 10% and 20% strain, respectively. The Young's modulus was 2.0 MPa ± 0.63, and the ultimate tensile strength was 0.619 ± 0.177 MPa. AuC-derived neocartilages contained 0.144 ± 0.011 µg collagen, 0.185 µg ± 0.002 glycosaminoglycans per µg dry weight, and 1.7e-3 µg elastin per µg dry weight. In conclusion, this study shows that AuCs can be used as a reliable and easily accessible cell source for TE of biomimetic and mechanically robust elastic neocartilage implants.

2.
J Ultrasound ; 25(4): 877-886, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35179715

RESUMO

PURPOSE: Early diagnosis of bronchiolitis in infants allows for risk stratification for central apnea, and, when available, the timely initiation of antiviral treatment. An animal model could demonstrate if earlier diagnosis is possible with ultrasound than with clinical exam. Even if possible, translating this to pediatrics would require observations from undifferentiated human infants. METHODS: We used serial daily clinical and lung ultrasound exams in a bovine calf model (Bos taurus) of respiratory syncytial virus bronchiolitis. Ultrasound and clinical examiners were blinded to each other's findings and the treatments used in 24 calves. Time to diagnosis was compared using Kaplan-Meier curves. A case series of human infants with upper respiratory tract infections, without clinical signs of bronchiolitis, and in whom lung ultrasound was performed, was extracted from hospital records. RESULTS: In the bovine model, lung ultrasound findings emerged earlier and lasted later than auscultatory findings. Relying on auscultation, 5/24 (21%) of animals were diagnosed by post-inoculation day 5 whereas 24/24 (100%) were diagnosed by ultrasound. We identified seven infants in whom lung ultrasound was used to diagnose bronchiolitis before adventitial lung sounds emerged. Three of these subsequently developed typical clinical findings of bronchiolitis in the hospital. Two had alternative explanations for their abnormal lung ultrasounds (both required surgical intervention). Two were discharged and required no further medical attention. CONCLUSION: Lung ultrasound allowed earlier diagnosis of bronchiolitis than clinical exam in the bovine model. In the human case series this was also true, but alternative causes of abnormal ultrasound were frequent.


Assuntos
Experimentação Animal , Bronquiolite , Humanos , Lactente , Criança , Animais , Bovinos , Bronquiolite/diagnóstico por imagem , Bronquiolite/terapia , Pulmão/diagnóstico por imagem , Auscultação , Diagnóstico Precoce
3.
J Ultrasound ; 25(3): 611-624, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35067896

RESUMO

PURPOSE: Bronchiolitis is a very common acute lung disease in infants caused commonly by respiratory syncytial virus (RSV). Point-of-care lung ultrasound is increasingly used in clinical care but proof that ultrasound reflects histological disease is lacking. Bovine calves are a good model for RSV bronchiolitis. We answered the following two questions: (1) does point-of-care lung ultrasound reflect lung pathology at the histological level in a bovine calf model of bronchiolitis? and (2) are point-of-care lung ultrasound images in human infants similar to those obtained in calves? METHODS: We experimentally infected 24 five to six-week-old bovine calves with RSV and compared six window lung ultrasound with lung histology10 days after inoculation. The calves were treated with antivirals and antipyretics leading to variable severity of illness. We used canonical discriminant analysis to determine if abnormal lung ultrasound findings reflected different histological findings. We compared the ultrasounds obtained from the calves with ultrasounds obtained from 10 human infants who were diagnosed clinically with bronchiolitis. RESULTS: Canonical discriminant analysis generally demonstrated good class separation based on the maximal severity of ultrasound finding in each acoustic window. Lung ultrasound performed poorly at detecting bronchopneumonia. Bovine ultrasounds looked similar to human infant lung ultrasounds. CONCLUSION: Point-of-care lung ultrasound abnormalities reflect lung pathology at the histological level in a bovine calf model of bronchiolitis. Point-of-care lung ultrasound images in human infants are similar to those obtained in calves.


Assuntos
Bronquiolite , Infecções por Vírus Respiratório Sincicial , Doença Aguda , Animais , Bronquiolite/diagnóstico por imagem , Bronquiolite/patologia , Bovinos , Humanos , Lactente , Pulmão/diagnóstico por imagem , Infecções por Vírus Respiratório Sincicial/diagnóstico por imagem , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Infecções por Vírus Respiratório Sincicial/patologia , Vírus Sinciciais Respiratórios
4.
PLoS One ; 16(6): e0252455, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34111152

RESUMO

Bovine respiratory syncytial virus (RSV) has substantial morbidity in young calves, and closely parallels human RSV in infants. We performed a randomized controlled trial in five to six-week-old Holstein calves (Bos taurus). comparing fusion protein inhibitor (FPI) and non-steroidal anti-inflammatory drug (NSAID) singly and in combination at three and five days after experimental BRSV infection. Thirty-six calves received one of six treatments; Ibuprofen started on day 3, Ibuprofen started on day 5, FPI started on day 5, FPI and Ibuprofen started on day 3, FPI and Ibuprofen started on day 5, or placebo. We have previously reported significant clinical benefits when combined FPI and NSAID treatment was started at three and five days after bovine RSV infection. Necropsy was performed on Day 10 following infection and hematoxylin and eosin staining was performed on sections from each lobe. Histology was described using a four-point scale. We performed canonical discrimination analysis (CDA) to determine the structural level where differences between treatments occurred and mixed effects regression to estimate effect sizes. Separation from placebo was maximal for dual therapy at the levels of the alveolus, septum, and bronchus in CDA. We found that the clinical benefits of combined FPI and NSAID treatment of BRSV extend at least partially from histopathological changes in the lung when treatment was started three days after infection. We found decreased lung injury when ibuprofen was started as monotherapy on day 3, but not day 5 following infection. Combined therapy with both an FPI and ibuprofen was always better than ibuprofen alone. We did not prove that the clinical benefits seen starting FPI and ibuprofen five days after infection can be solely explained by histopathological differences as identified on H&E staining.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Animais , Bovinos , Pneumonia/tratamento farmacológico , Carga Viral
6.
PLoS One ; 16(2): e0246695, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33600498

RESUMO

Bovine Respiratory Syncytial virus (BRSV) is one of the major infectious agents in the etiology of the bovine respiratory disease complex. BRSV causes a respiratory syndrome in calves, which is associated with severe bronchiolitis. In this study we describe the effect of treatment with antiviral fusion protein inhibitor (FPI) and ibuprofen, on gene expression in lung tissue of calves infected with BRSV. Calves infected with BRSV are an excellent model of human RSV in infants: we hypothesized that FPI in combination with ibuprofen would provide the best therapeutic intervention for both species. The following experimental treatment groups of BRSV infected calves were used: 1) ibuprofen day 3-10, 2) ibuprofen day 5-10, 3) placebo, 4) FPI day 5-10, 5) FPI and ibuprofen day 5-10, 6) FPI and ibuprofen day 3-10. All calves were infected with BRSV on day 0. Daily clinical evaluation with monitoring of virus shedding by qRT-PCR was conducted. On day10 lung tissue with lesions (LL) and non-lesional (LN) was collected at necropsy, total RNA extracted, and RNA sequencing performed. Differential gene expression analysis was conducted with Gene ontology (GO) and KEGG pathway enrichment analysis. The most significant differential gene expression in BRSV infected lung tissues was observed in the comparison of LL with LN; oxidative stress and cell damage was especially noticeable. Innate and adaptive immune functions were reduced in LL. As expected, combined treatment with FPI and Ibuprofen, when started early, made the most difference in gene expression patterns in comparison with placebo, especially in pathways related to the innate and adaptive immune response in both LL and LN. Ibuprofen, when used alone, negatively affected the antiviral response and caused higher virus loads as shown by increased viral shedding. In contrast, when used with FPI Ibuprofen enhanced the specific antiviral effect of FPI, due to its ability to reduce the damaging effect of prostanoids and oxidative stress.


Assuntos
Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Infecções por Vírus Respiratório Sincicial/genética , Vírus Sincicial Respiratório Bovino/genética , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Antivirais/farmacocinética , Bovinos , Doenças dos Bovinos/imunologia , Inibidores de Ciclo-Oxigenase/farmacologia , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Ibuprofeno/farmacologia , Pulmão/citologia , Pulmão/patologia , Pulmão/virologia , Infecções por Vírus Respiratório Sincicial/metabolismo , Vírus Sincicial Respiratório Bovino/patogenicidade , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Eliminação de Partículas Virais/efeitos dos fármacos
7.
PLoS One ; 15(3): e0230245, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32163508

RESUMO

INTRODUCTION: Bovine respiratory syncytial virus (RSV) is a valid model for human RSV and an important bovine pathogen. Very early administration of ibuprofen and GS-561937, a fusion protein inhibitor (FPI), have separately been shown to decrease the severity of bovine RSV. Our aims were to determine how long after RSV inoculation ibuprofen and GS-561937 can be administered with clinical benefit and whether using both was better than monotherapy. MATERIALS AND METHODS: We conducted a blinded randomized placebo controlled trial of ibuprofen, GS-561937 (FPI), or combinations of the two initiated at 3 or 5 days after artificial infection with bovine RSV in 36 five to six-week-old Holstein calves (Bos taurus). We measured clinical scores, respiratory rate, and viral shedding daily for 10 days following inoculation. We estimated the average effect for each drug and compared treatment arms using mixed effects models. RESULTS: We found a significant decrease in clinical scores only in the combined treatment arms. This benefit was greater when treatment was initiated at 3 days rather than 5 days post infection with decreased clinical scores and lower respiratory rates at both time points. Ibuprofen alone started on day 3 increased, and FPI with ibuprofen started on day 3 decreased, viral shedding. CONCLUSION: Dual therapy with Ibuprofen and FPI, on average, decrease clinical severity of illness in a bovine model of RSV when started at 3 and 5 days after infection.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antivirais/farmacologia , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Vírus Sincicial Respiratório Bovino/efeitos dos fármacos , Animais , Bovinos , Modelos Animais de Doenças , Humanos , Ibuprofeno/farmacologia , Pulmão/virologia , Carga Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
8.
Vaccine ; 35(15): 1954-1963, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28274639

RESUMO

Bovine respiratory syncytial virus (BRSV) and Histophilus somni synergize to cause respiratory disease in cattle. These pathogens cause enhanced disease during dual-infection and an IgE response to antigens of H. somni in dual-infected but not singly infected calves. Vaccines containing whole inactivated BRSV or H. somni have been associated with IgE responses A vaccine strategy that avoids stimulation of IgE antibodies would provide superior protection from dual infection. We hypothesized that a subunit vaccine consisting of the nucleoprotein (NP) from BRSV and the recombinant antigen IbpA DR2 (a surface antigen of H. somni with two toxic fic motifs) in Quil A adjuvant would elicit protection without disease enhancement. Three groups of calves were vaccinated twice with either: Formalin inactivated BRSV (FI) plus Somnivac®, NP & IbpA DR2 plus Quil A or Quil A alone, followed by BRSV and H. somni challenge. Clinical scores and antibody levels (to whole pathogens and to the subunits) were evaluated. Lungs were examined at necropsy on day 23 after infection. Clinical scores were significantly greatest for the FI & Somnivac® group and both clinical scores and lung pathology were lowest for the subunit group. All calves shed BRSV in nasal secretions. FI & Somnivac® induced IgE antibodies to H. somni and BRSV, but not to NP or DR2. The subunit vaccine did not induce an IgE antibody response to IbpA DR2 antigen and induced little IgE to H. somni. It did not induce an IgG antibody response to BRSV and H. somni, but stimulated production of IgG antibodies against the subunits. In summary, the subunit vaccine, consisting of the BRSV NP and H. somni IbpA DR2 in Quil A, protected against severe clinical signs and decreased lung pathology but did not prevent viral shedding. Importantly it prevented synergistic disease expression in response to dual infection.


Assuntos
Vacinas Bacterianas/imunologia , Infecções por Pasteurellaceae/veterinária , Pasteurellaceae/imunologia , Infecções por Vírus Respiratório Sincicial/veterinária , Vírus Sinciciais Respiratórios/imunologia , Vacinas Virais/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Formação de Anticorpos , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/genética , Bovinos , Pulmão/patologia , Infecções por Pasteurellaceae/patologia , Infecções por Pasteurellaceae/prevenção & controle , Saponinas de Quilaia/administração & dosagem , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Índice de Gravidade de Doença , Resultado do Tratamento , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
9.
PLoS One ; 11(4): e0152913, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27073858

RESUMO

BACKGROUND: Respiratory syncytial virus (RSV) is the most common cause of bronchiolitis and hospital admission in infants. An analogous disease occurs in cattle and costs US agriculture a billion dollars a year. RSV causes much of its morbidity indirectly via adverse effects of the host response to the virus. RSV is accompanied by elevated prostaglandin E2 (PGE2) which is followed by neutrophil led inflammation in the lung. Ibuprofen is a prototypical non-steroidal anti-inflammatory drug that decreases PGE2 levels by inhibiting cyclooxygenase. HYPOTHESES: We hypothesized that treatment of RSV with ibuprofen would decrease PGE2 levels, modulate the immune response, decrease clinical illness, and decrease the histopathological lung changes in a bovine model of RSV. We further hypothesized that viral replication would be unaffected. METHODS: We performed a randomized placebo controlled trial of ibuprofen in 16 outbred Holstein calves that we infected with RSV. We measured clinical scores, cyclooxygenase, lipoxygenase and endocannabinoid products in plasma and mediastinal lymph nodes and interleukin (Il)-4, Il-13, Il-17 and interferon-γ in mediastinal lymph nodes. RSV shedding was measured daily and nasal Il-6, Il-8 and Il-17 every other day. The calves were necropsied on Day 10 post inoculation and histology performed. RESULTS: One calf in the ibuprofen group required euthanasia on Day 8 of infection for respiratory distress. Clinical scores (p<0.01) and weight gain (p = 0.08) seemed better in the ibuprofen group. Ibuprofen decreased cyclooxygenase, lipoxygenase, and cytochrome P450 products, and increased monoacylglycerols in lung lymph nodes. Ibuprofen modulated the immune response as measured by narrowed range of observed Il-13, Il-17 and IFN-γ gene expression in mediastinal lymph nodes. Lung histology was not different between groups, and viral shedding was increased in calves randomized to ibuprofen. CONCLUSIONS: Ibuprofen decreased PGE2, modulated the immune response, and improved clinical outcomes. However lung histopathology was not affected and viral shedding was increased.


Assuntos
Doenças dos Bovinos/tratamento farmacológico , Modelos Animais de Doenças , Ibuprofeno/uso terapêutico , Pulmão/efeitos dos fármacos , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Vírus Sincicial Respiratório Bovino/efeitos dos fármacos , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Bovinos , Doenças dos Bovinos/patologia , Doenças dos Bovinos/virologia , Citocinas/metabolismo , Técnicas Imunoenzimáticas , Pulmão/patologia , Pulmão/virologia , Masculino , Infecções por Vírus Respiratório Sincicial/patologia , Infecções por Vírus Respiratório Sincicial/virologia , Carga Viral/efeitos dos fármacos
10.
PLoS One ; 10(11): e0142479, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26571015

RESUMO

Bovine respiratory disease complex (BRDC) is an important cause of mortality and morbidity in cattle; costing the dairy and beef industries millions of dollars annually, despite the use of vaccines and antibiotics. BRDC is caused by one or more of several viruses (bovine respiratory syncytial virus, bovine herpes type 1 also known as infectious bovine rhinotracheitis, and bovine viral diarrhea virus), which predispose animals to infection with one or more bacteria. These include: Pasteurella multocida, Mannheimia haemolytica, Mycoplasma bovis, and Histophilus somni. Some cattle appear to be more resistant to BRDC than others. We hypothesize that appropriate immune responses to these pathogens are subject to genetic control. To determine which genes are involved in the immune response to each of these pathogens it was first necessary to experimentally induce infection separately with each pathogen to document clinical and pathological responses in animals from which tissues were harvested for subsequent RNA sequencing. Herein these infections and animal responses are described.


Assuntos
Complexo Respiratório Bovino/microbiologia , Complexo Respiratório Bovino/virologia , Resistência à Doença , Animais , Complexo Respiratório Bovino/imunologia , Bovinos , Herpesvirus Bovino 1 , Íleo/microbiologia , Íleo/virologia , Sistema Imunitário , Imunidade Humoral , Imuno-Histoquímica , Pulmão/microbiologia , Pulmão/virologia , Masculino , Mannheimia haemolytica , Mycoplasma bovis , Pasteurella multocida , Faringe/microbiologia , Faringe/virologia , Vírus Sincicial Respiratório Bovino , Análise de Sequência de RNA
11.
Antimicrob Agents Chemother ; 59(8): 4889-900, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26055364

RESUMO

Respiratory syncytial virus (RSV) is the leading cause of bronchiolitis and pneumonia in infants. Effective treatment for RSV infection is a significant unmet medical need. While new RSV therapeutics are now in development, there are very few animal models that mimic the pathogenesis of human RSV, making it difficult to evaluate new disease interventions. Experimental infection of Holstein calves with bovine RSV (bRSV) causes a severe respiratory infection that is similar to human RSV infection, providing a relevant model for testing novel therapeutic agents. In this model, viral load is readily detected in nasal secretions by quantitative real-time PCR (qRT-PCR), and cumulative symptom scoring together with histopathology evaluations of infected tissue allow for the assessment of disease severity. The bovine RSV model was used to evaluate the antiviral activity of an RSV fusion inhibitor, GS1, which blocks virus entry by inhibiting the fusion of the viral envelope with the host cell membrane. The efficacy of GS1, a close structural analog of GS-5806 that is being developed to treat RSV infection in humans was evaluated in two randomized, blind, placebo-controlled studies in bRSV-infected calves. Intravenous administration of GS1 at 4 mg/kg of body weight/day for 7 days starting 24 h or 72 h postinoculation provided clear therapeutic benefit by reducing the viral load, disease symptom score, respiration rate, and lung pathology associated with bRSV infection. These data support the use of the bovine RSV model for evaluation of experimental therapeutics for treatment of RSV.


Assuntos
Antivirais/farmacologia , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Vírus Sincicial Respiratório Bovino/efeitos dos fármacos , Animais , Bronquiolite/tratamento farmacológico , Bronquiolite/virologia , Bovinos , Doenças dos Bovinos/tratamento farmacológico , Doenças dos Bovinos/patologia , Doenças dos Bovinos/virologia , Linhagem Celular , Membrana Celular/patologia , Membrana Celular/virologia , Método Duplo-Cego , Humanos , Indazóis , Pulmão/patologia , Pulmão/virologia , Masculino , Pirazóis/farmacologia , Infecções por Vírus Respiratório Sincicial/patologia , Vírus Sincicial Respiratório Humano/efeitos dos fármacos , Sulfonamidas/farmacologia , Carga Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...