Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem C Nanomater Interfaces ; 128(23): 9504-9512, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38894752

RESUMO

Fe-based catalysts are highly selective for the hydrodeoxygenation of biomass-derived oxygenates but are prone to oxidative deactivation. Promotion with a noble metal has been shown to improve oxidative resistance. The chemical properties of such bimetallic systems depend critically on the surface geometry and spatial configuration of surface atoms in addition to their coverage (i.e., noble metal loading), so these aspects must be taken into account in order to develop reliable models for such complex systems. This requires sampling a vast configurational space, which is rather impractical using density functional theory (DFT) calculations alone. Moreover, "DFT-based" models are limited to length scales that are often too small for experimental relevance. Here, we circumvent this challenge by constructing DFT-parametrized lattice gas cluster expansions (LG CEs), which can describe these types of systems at significantly larger length scales. Here, we apply this strategy to Fe(100) promoted with four technologically relevant precious metals: Pd, Pt, Rh, and Ru. The resultant LG CEs have remarkable predictive accuracy, with predictive errors below 10 meV/site over a coverage range of 0 to 2 monolayers. The ground state configurations for each noble metal were identified, and the analysis of the cluster energies reveals a significant disparity in their dispersion tendency.

2.
J Phys Chem A ; 127(50): 10693-10700, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38059355

RESUMO

To capture the dominant interactions (surface-mediated and through-space) in catalytic hydrodeoxygenation systems, coverage-dependent mean-field models of aromatic adsorption are developed on Pt(111) and Ru(0001). We derive three key insights from this work: (1) we can universally apply mean-field models to capture the coverage-dependent behavior of oxygenated aromatics on transition-metal surfaces, (2) we can deconvolute surface-mediated and through-space interactions from the mean-field model, and (3) we can develop relatively accurate models that predict the adsorption energy of aromatics on transition-metal surfaces for the full coverage range using the work function at the lowest modeled coverage. Our approach enables the rapid prediction of the coverage-dependent behavior of oxygenated aromatics on transition-metal surfaces, reducing the computational cost associated with these studies by an order of magnitude.

3.
Chemphyschem ; 24(13): e202300391, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400930

RESUMO

The front cover artwork is provided by Professor Jean-Sabin McEwen at Washington State University. The image shows how ion exchanges prepared with different copper precursors influence how the copper ultimately sites relative to the zeolite framework, which ultimately impacts its catalytic reactivity for the selective catalytic reduction (SCR) of NOx in Cu-SSZ-13. Read the full text of the Research Article at 10.1002/cphc.202300271.

4.
Chemphyschem ; 24(13): e202300271, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37074735

RESUMO

The influence of the copper ion exchange protocol on SCR activity of SSZ-13 is quantified. Using the same parent SSZ-13 zeolite, four exchange protocols are used to assess how exchange protocol impacts metal uptake and SCR activity. Large differences in the SCR activity, nearly 30 percentage points at 160 °C at constant copper content, are observed for different exchange protocols implying that different exchange protocols lead to different copper species. Hydrogen temperature programmed reduction on selected samples and infrared spectroscopy of CO binding corroborates this conclusion as the reactivity at 160 °C correlates with the intensity of the IR band at 2162 cm-1 . DFT-based calculations show that such an IR assignment is consistent with CO adsorbed on a Cu(I) cation within an eight-membered ring. This work shows that SCR activity can be influenced by the ion exchange process even when different protocols lead to the same metal loading. Perhaps most interesting, a protocol used to generate Cu-MOR for methane to methanol studies led to the most active catalyst both on a unit mass or unit mole copper basis. This points to a yet not recognized means to tailor catalyst activity as the open literature is silent on this issue.

5.
ACS Omega ; 7(17): 14490-14504, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35557684

RESUMO

Due to phosphate's necessity in agriculture and its danger to the environment, the development of adsorbents for its removal has been the subject of intensive research activity. Although the introduction of nitrogen functionality to chars and modification of biochar with metals have proven to change the character of the char structure, making it more active toward nutrients, there is no study regarding the doping of biochar with metals and nitrogen simultaneously for the adsorption of phosphates. This paper is the first of two in which we report the production, characterization, and evaluation of N-metal-doped biochars from cellulose for phosphate removal from liquid effluents. In this part, we describe the production and characterization of N-Ca-, N-Fe-, and N-Mg-doped biochars. The elemental composition and surface area of each of the materials produced is reported. Elemental and surface characterization of the chars are reported with the largest N content appearing at a temperature of 800 °C (12.5 wt %) and a maximum surface area for biochar produced at 900 °C (1314 m2/g). All of the adsorbents were visualized by scanning electron microscope (SEM), confirming that although there are some crystals on the surface of the biochar produced, most of the N, Mg, and Ca are part of the polyaromatic ring structure. Transmission electron microscope (TEM) images clearly show the formation of nanoclusters with the metals in the case of N-Fe and N-Ca biochars. The N-Mg biochars show a uniform distribution of the Mg through the carbon surface. X-ray photoelectron spectroscopy (XPS) studies of the biochars produced with metals and varying nitrogen levels clearly show Mg and Ca peaks shifting their position in the presence of N, suggesting the formation of stable structures between metals and N in the carbon polyaromatic ring system. To elucidate the nature of these structures, we conducted DFT-based calculations on different configurations of the nitrogenated structures. The calculated binding energy shifts were found to closely match the XPS experimental binding energy, confirming the likelihood of these structures in biochar. Finally, based on our experimental and modeling results, we hypothesize that an important fraction of the Mg and Ca is introduced to these biochars at the edges. Another fraction of Mg and Ca is in the form of phthalocyanine-like internal structures. More experimental studies are needed to confirm the formation of these very interesting structures and their potential use as adsorbents or catalysts.

6.
J Am Chem Soc ; 144(2): 723-732, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34964646

RESUMO

We report an example that demonstrates the clear interdependence between surface-supported reactions and molecular-adsorption configurations. Two biphenyl-based molecules with two and four bromine substituents, i.e., 2,2'-dibromobiphenyl (DBBP) and 2,2',6,6'-tetrabromo-1,1'-biphenyl (TBBP), show completely different reaction pathways on a Ag(111) surface, leading to the selective formation of dibenzo[e,l]pyrene and biphenylene dimer, respectively. By combining low-temperature scanning tunneling microscopy, synchrotron radiation photoemission spectroscopy, and density functional theory calculations, we unravel the underlying reaction mechanism. After debromination, a biradical biphenyl can be stabilized by surface Ag adatoms, while a four-radical biphenyl undergoes spontaneous intramolecular annulation due to its extreme instability on Ag(111). Such different chemisorption-induced precursor states between DBBP and TBBP consequently lead to different reaction pathways after further annealing. In addition, using bond-resolving scanning tunneling microscopy and scanning tunneling spectroscopy, we determine with atomic precision the bond-length alternation of the biphenylene dimer product, which contains 4-, 6-, and 8-membered rings. The 4-membered ring units turn out to be radialene structures.

7.
JACS Au ; 1(9): 1471-1487, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34604856

RESUMO

Water plays pivotal roles in tailoring reaction pathways in many important reactions, including cascade C-C bond formation and oxygen elimination. Herein, a kinetic study combined with complementary analyses (DRIFTS, isotopic study, 1H solid-state magic angle spinning nuclear magnetic resonance) and density functional theory (DFT) calculations are performed to elucidate the roles of water in cascade acetone-to-isobutene reactions on a Zn x Zr y O z mixed metal oxide with balanced Lewis acid-base pairs. Our results reveal that the reaction follows the acetone-diacetone alcohol-isobutene pathway. Isobutene is produced through an intramolecular rearrangement of the eight-membered ring intermediate formed via the adsorption of diacetone alcohol on the Lewis acid-base pairs in the presence of cofed water. OH adspecies, formed by the dissociative adsorption of water on the catalyst surface, were found to distort diacetone alcohol's hydroxyl functional group toward its carbonyl functional group and facilitate the intramolecular rearrangement of diacetone alcohol to form isobutene. In the absence of water, diacetone alcohol binds strongly to the Lewis acid site, e.g., at a Zr4+ site, via its carbonyl functional group, leading to its dramatic structural distortion and further dehydration reaction to form mesityl oxide as well as subsequent polymerization reactions and the formation of coke. The present results provide insights into the cooperative roles of water and Lewis acid-base pairs in catalytic upgrading of biomass to fuels and chemicals.

8.
J Chem Phys ; 154(17): 174709, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34241058

RESUMO

The high activity and selectivity of Fe-based heterogeneous catalysts toward a variety of reactions that require the breaking of strong bonds are offset in large part by their considerable instability with respect to oxidative deactivation. While it has been shown that the stability of Fe catalysts is considerably enhanced by alloying them with precious metals (even at the single-atom limit), rational design criteria for choosing such secondary metals are still missing. Since oxidative deactivation occurs due to the strong binding of oxygen to Fe and reduction by adsorbed hydrogen mitigates the deactivation, we propose here to use the binding affinity of oxygen and hydrogen adatoms as the basis for rational design. As it would also be beneficial to use cheaper secondary metals, we have scanned over a large subset of 3d-5d mid-to-late transition metal single atoms and computationally determined their effect on the oxygen and hydrogen adlayer binding as a function of chemical potential and adsorbate coverage. We further determine the underlying chemical origins that are responsible for these effects and connect them to experimentally tunable quantities. Our results reveal a reliable periodic trend wherein oxygen binding is weakened greatest as one moves right and down the periodic table. Hydrogen binding shows the same trend only at high (but relevant) coverages and otherwise tends to have its binding slightly increased in all systems. Trends with secondary metal coverage are also uncovered and connected to experimentally tunable parameters.

9.
Chem Commun (Camb) ; 57(48): 5937-5940, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34014236

RESUMO

The formation of a two-phase surface molecular overlayer that transitions from isolated propene molecules to a highly ordered 1D chain structure on Cu(111) is elucidated through combined high-resolution STM imaging and DFT-based calculations. These models reveal how disordered molecules present in-between the 1D chains stabilizes the system as a whole.

10.
ACS Nano ; 14(4): 4682-4688, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32186852

RESUMO

Chiral surfaces are of growing interest for enantioselective adsorption and reactions. While metal surfaces can be prepared with a wide range of chiral surface orientations, chiral oxide surface preparation is more challenging. We demonstrate the chirality of a metal surface can be used to direct the homochiral growth of a thin film chiral oxide. Specifically, we study the chiral "29" copper oxide, formed by oxidizing a Cu(111) single crystal at 650 K. Surface structure spread single crystals, which expose a continuous distribution of surface orientations as a function of position on the crystal, enable us to systematically investigate the mechanism of chirality transfer between the metal and the surface oxide with high-resolution scanning tunneling microscopy. We discover that the local underlying metal facet directs the orientation and chirality of the oxide overlayer. Importantly, single homochiral domains of the "29" oxide were found in areas where the Cu step edges that templated growth were ≤20 nm apart. We use this information to select a Cu(239 241 246) oriented single crystal and demonstrate that a "29" oxide surface can be grown in homochiral domains by templating from the subtle chirality of the underlying metal crystal. This work demonstrates how a small degree of chirality induced by slight misorientation of a metal surface (∼1 sites/20 nm2) can be amplified by oxidation to yield a homochiral oxide with a regular array of chiral oxide pores (∼75 sites/20 nm2). This offers a general approach for making chiral oxide surfaces via oxidation of an appropriately "miscut" metal surface.

11.
ACS Nano ; 13(5): 5939-5946, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31070888

RESUMO

Enantioselective interactions underpin many important phenomena from biological mechanisms to chemical catalysis. In this regard, there is great interest in understanding these effects at the molecular level. Surfaces provide a platform for these studies and aid in the long-term goal of designing heterogeneous enantiospecific interfaces. Herein we report a model system consisting of molecular rotors, one intrinsically chiral (propylene oxide) and one that becomes chiral when adsorbed on a surface (propene). Scanning tunneling microscopy (STM) measurements enable the chirality of each individual molecule to be directly visualized, and density functional theory based calculations are performed to rationalize the chiral time-averaged appearance of the molecular rotors. While there are no attractive intermolecular interactions between the molecular species themselves, when mixed together there is a strong preference for the formation of 1:1 heteromolecular pairs. We demonstrate that STM tip-induced molecular manipulations can be used to assemble these complexes, examine the chirality of each species, and thereby interrogate if their interactions are enantioselective. A statistical analysis of this data reveals that intrinsically chiral propylene oxide preferentially binds one of the enantiomers of propene with a 3:2 ratio, thereby demonstrating that the surface chirality of small nonchiral molecules can be directed with a chiral modifier. As such, this investigation sheds light onto previously reported ensemble studies in which chirally seeded layers of molecules that are achiral in the gas phase can lead to an amplification of enantioselective adsorption.

12.
J Phys Chem Lett ; 9(11): 3035-3042, 2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29665684

RESUMO

Cu K-edge X-ray absorption near-edge spectra (XANES) have been widely used to study the properties of Cu-SSZ-13. In this Letter, the sensitivity of the XANES features to the local environment for a Cu+ cation with a linear configuration and a Cu2+ cation with a square-linear configuration in Cu-SSZ-13 is reported. When a Cu+ cation is bonded to H2O or NH3 in a linear configuration, the XANES has a strong peak at around 8983 eV. The intensity of this peak decreases as the linear configuration is broken. As for the Cu2+ cations in a square-planar configuration with a coordination number of 4, two peaks at around 8986 and 8993 eV are found. An intensity decrease for both peaks at around 8986 and 8993 eV is found in an NH3_4_Z2Cu model as the N-Cu-N angle changes from 180 to 100°. We correlate these features to the variation of the 4p state by PDOS analysis. In addition, the feature peaks for both the Cu+ cation and Cu2+ cation do not show a dependence on the Cu-N bond length. We further show that the feature peaks also change when the coordination number of the Cu cation is varied, while these feature peaks are independent of the zeolite topology. These findings help elucidate the experimental XANES features at an atomic and an electronic level.

13.
J Chem Phys ; 147(22): 224706, 2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-29246067

RESUMO

The geometric and electronic structural characterization of thin film metal oxides is of fundamental importance to many fields such as catalysis, photovoltaics, and electrochemistry. Surface defects are also well known to impact a material's performance in any such applications. Here, we focus on the "29" oxide Cu2O/Cu(111) surface and we observe two common structural defects which we characterize using scanning tunneling microscopy/spectroscopy and density functional theory. The defects are proposed to be O vacancies and Cu adatoms, which both show unique topographic and spectroscopic signatures. The spatially resolved electronic and charge state effects of the defects are investigated, and implications for their reactivity are given.

14.
Angew Chem Int Ed Engl ; 56(13): 3557-3561, 2017 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-28240406

RESUMO

The role of low concentrations of carbon complexes in hydrocarbon decomposition over transition metal surfaces has been a topic of much debate over the past decades. It is also a mystery as to whether or not electric fields can enhance hydrocarbon conversion in an electrochemical device at lower than normal reforming temperatures. To provide a "bottom-up" fundamental insight, C-H bond cleavage in methane over Ni-based catalysts was investigated. Our theoretical results show that the presence of carbon or carbide-like species at the interface between the Ni cluster and its metal-oxide support, as well as the application of an external positive electric field, can significantly increase the Ni oxidation state. Furthermore, the first C-H bond cleavage in methane is favored as the local oxidation state of Ni increases. Thus, the presence of a low concentration of carbon species, or the addition of a positive electric field will improve the hydrocarbon activation process.

15.
Phys Chem Chem Phys ; 16(6): 2399-410, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24352204

RESUMO

To provide a basis for understanding the reactive processes on nickel surfaces at fuel cell anodes, we investigate the influence of an external electric field on the dehydrogenation of methyl species on a Ni(111) surface using density functional theory calculations. The structures, adsorption energies and reaction barriers for all methyl species dissociation on the Ni(111) surface are identified. Our results show that the presence of an external electric field does not affect the structures and favorable adsorption sites of the adsorbed species, but causes the adsorption energies of the CHx species at the stable site to fluctuate around 0.2 eV. Calculations give an energy barrier of 0.692 eV for CH3* → CH2* + H*, 0.323 eV for CH2* → CH* + H* and 1.373 eV for CH* → C* + H*. Finally, we conclude that the presence of a large positive electric field significantly increases the energy barrier of the CH* → C* + H* reaction more than the other two reactions, suggesting that the presence of pure C atoms on Ni(111) are impeded in the presence of an external positive electric field.

16.
Phys Chem Chem Phys ; 15(47): 20662-71, 2013 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-24189500

RESUMO

We systematically investigate the adsorption of benzene on Pt(111), Pt(355) and Pt(322) surfaces by high-resolution X-ray photoelectron spectroscopy (XPS) and first-principle calculations based on density functional theory (DFT), including van der Waals corrections. By comparing the adsorption energies at 1/9, 1/16 and 1/25 ML on Pt(111), we find significant lateral interactions exist between the benzene molecules at 1/9 ML. The adsorption behavior on Pt(355) and Pt(322) is very different. While on Pt(355) a step species is clearly identified in the C 1s spectra at low coverages followed by occupation of a terrace species at high coverages, no evidence for a step species is found on Pt(322). These different adsorption sites are confirmed by extensive DFT calculations, where the most favorable adsorption configurations on Pt(355) and Pt(322) are also found to vary: a highly distorted across the step molecule is found on Pt(355) while a less distorted configuration adjacent to the step molecule is deduced for Pt(322). The theoretically proposed C 1s core level binding energy shifts between these most favorable configurations and the terrace species are found to correlate well with experiment: for Pt(355), two adsorbate states are found, separated by ~0.4 eV in XPS and 0.3 eV in the calculations, in contrast to only one state on Pt(322).

17.
Proc Natl Acad Sci U S A ; 106(9): 3006-10, 2009 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-19223594

RESUMO

Field ion microscopy combined with video techniques and chemical probing reveals the existence of catalytic oscillatory patterns at the nanoscale. This is the case when a rhodium nanosized crystal--conditioned as a field emitter tip--is exposed to hydrogen and oxygen. Here, we show that these nonequilibrium oscillatory patterns find their origin in the different catalytic properties of all of the nanofacets that are simultaneously exposed at the tip's surface. These results suggest that the underlying surface anisotropy, rather than a standard reaction-diffusion mechanism, plays a major role in determining the self-organizational behavior of multifaceted nanostructured surfaces. Surprisingly, this nanoreactor, composed of the tip crystal and a constant molecular flow of reactants, is large enough for the emergence of regular oscillations from the molecular fluctuations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...